COURSE NUMBER	ME 316
COURSE TITLE	Machine Design
Course Structure	(3-0-3) (lecture hr/wk - lab hr/wk – course credits)
COURSE COORDINATOR	Siva Nadimpalli
COURSE DESCRIPTION	Aspects of the design process and design of machine elements. Miniprojects are used to introduce engineering design procedures
PREREQUISITE(S)	ME 231 Kinematics of Machinery, ME315 Stress Analysis.
COREQUISITE(S)	None
REQUIRED, ELECTIVE OR SELECTED ELECTIVE	Required
REQUIRED MATERIALS	Machine Design, 5th edition, Robert L. Norton, Pearson Prentice Hall 2014
Other supplemental materials (not Required)	Handouts prepared by instructor.
COMPUTER USAGE	Machine design analysis software.

COURSE LEARNING OUTCOMES/ EXPECTED	Course Learning Outcomes: Upon completing this course, students will be able to:	SOs*	Expected Performance Criteria
PERFORMANCE CRITERIA:	1 Demonstrate a thorough understanding of fundamental principles of strength of materials and solid mechanics as they pertain to the design of machine elements	1	Exam Question (80% of students will earn a grade of 75% or better on this question)
	2. Design new components while considering their functional requirements and constraints placed over them	1,2,4, and 7	Design Project (80% of students will earn a grade of 75% or better on this project)
	3. Apply appropriate theories of failure in the design of new machine components under both static and dynamic loading	1 and 2	Exam Question (80% of students will earn a grade of 75% or better on this question)
	4. Select a component from available designs such as bearings, gears, fasteners and springs	1 and 2	Exam Question (80% of students will earn 75% or better on this question)
	5. Describe the impact of issues such as safety legislation, design codes and the environment on the mechanical design process and on the profession,	4,5, and 6	Report (Concepts so important to practicing engineers that nearly 100% of students must show understanding)
	6. Select appropriate materials for the designed components	1,2,4, and 7	Project (80% of students will earn a grade of 75% or better on this project)
	7. Explain the manufacturing process required for producing the desired part	1,4, and 7	Project (80% of students will earn a grade of 75% or better on this project)
	8. Define tolerances and clearances for the designed part	1	Homework Assignment or Project (80% of students will earn at grade of 75% or better on this problem)
	9. Use of existing engineering analysis software to assist in the design of mechanical components.	1,2,4, and 7	Project (80% of students will earn a grade of 75% or better on this project)

CLASS TOPICS	Kinematics and load determination									
	2. Stress, strain, and deflection									
	3. Static failure theories									
	4. Fatigue failure theories									
	5. Shafts, keys, and couplings									
	6. Bearings and lubrication									
	7. Ball and roller bearings									
	8. Surface failure theories									
	8. Screws and fasteners									
	9. Weldments									
		10. Gears (Spur, helical, and worm)								
	11. Clutches and brakes									
	12. Springs									
	13. Miscellaneous Machine Elements									
STUDENT OUTCOMES (SCALE: 1-3)	1	2	3	4	5	6	7			
	3	3	1	2	2	2	2			
		•			•					
	3 – Strongly supported 2 – Supported 1 – Minimally supported									
	3 – Str	ongry suppo	rtea	∠ – Suppor	tea 1 – Mil	many sup	ported			

^{*} Student Outcomes.