Course Number	ME 304							
Course Title	Fluid Mechanics							
Course Structure	(3-0-3) (lecture hr/wk - lab hr/wk - course credits)							
Course Coordinator	I.J. Rao							
Course Description	Introduction to basic principles of conservation of mass, momentum, and energy as they apply to engineering systems which utilize fluids. Some of the topics studied are: dimensional analysis, theoretical and empirical analysis of one dimensional incompressible flows, empirical analysis of external and internal flows, and elementary boundary layer theory.							
Pre re quisite (s)	Mech 236 – Dynamics II, ME 311 – Thermodynamics							
Corequisite(s)	None							
Required, Elective or Selected Elective	Required							
Required Materials	B. R. Munson, D. F. Young, T. H. Okiishhi's. Fundamentals of Fluid Mechanics, <i>by Philip M. Gerhart, Andrew L. Gerhart, John I. Hochstein</i> 8th Edition, Wiley, NY, 2016.							
Supplemental materials (not Required)	None							
Computer Usage	Some problems may require use of software such as MATLAB or MathCad.							
Course Learning	Course Learning Outcomes	SOs*	Expected Performance Criteria					
Outcomes/ Expected Performance Criteria:	1 evaluate surface forces and pressure difference for a static fluid	1,4	Exam Question (70% of the students will earn a grade of 70% or better on this question)					
	2. apply the mechanical energy equation to a variety of physical systems.	1,2,4	Exam Question (70% of the students will earn a grade of 70% or better on this question)					
	3. apply the integral form of conservation laws to a variety of flows problems and obtain engineering design quantities, such as reaction forces and velocities.	1,2,4	Exam Question (70% of the students will earn a grade of 70% or better on this question)					

	4. form dimensionless groups and apply the resulting modeling laws to experimental data as well as a variety of engineering problems 5. apply the Navier-Stokes Equations to simple flows in planar and cylindrical geometries, solve for velocity and flow rate 6 calculate engineering design quantities (shear stress, losses, volumetric flow rates, pressures, pumping power) for laminar and			1,4	the st grade this quantity the st grade this quantity the st grade the st grade the st grade	Exam Question (70% of the students will earn a grade of 70% or better on this question) Exam Question (70% of the students will earn a grade of 70% or better on this question) Exam Question (70% of the students will earn a grade of 70% or better on the students will earn a grade of 70% or better on grade of 70% or better on			
	turbulent f 7. evaluate and bounda	lows in pipe e the drag cl	s. haracteristic rameters for		Example the stagrade	this question) Exam Question (70% of the students will earn a grade of 70% or better on this question) Exam Question (70% of the students will earn a grade of 70% or better on this question)			
Class Tories	that is appl flow situat		variety of	1,2,4	the st grade				
Class Topics	 Definitions, fluid properties Fluid statics. Pressure variation and its application in manometry and resultant forces on planer and curved surfaces. Flow patterns. Streamlines, pathlines, etc. Eulerian and Lagrangian descriptions. Fluid acceleration, local and convective. Control volume analysis: Application of continuity, momentum and energy equations. Differential analysis. Euler's and Bernoulli's equations and application. Dimensional analysis: Dimensionless parameters and model studies (3hrs) Internal flows: Laminar and turbulent pipe flows. Boundary layer concepts, laminar and turbulent flows. Drag: Drag on two-dimensional bodies. 								
Student	1	2	3	4	5	6	7		
Outcomes (Scale: 1-3)	3 – Strongl	1 y supported	2-3	1 Supported 1	— Minimal	ly suppo	orted		

^{*} Student Outcomes