Course Number	ME 304								
Course Title	Fluid Mechanics								
Course Structure	(3-0-3) (lecture hr/wk - lab hr/wk – course credits)								
Course Coordinator	I.J. Rao								
Course Description	Introduction to basic principles of conservation of mass, momentum, and energy as they apply to engineering systems which utilize fluids. Some of the topics studied are: dimensional analysis, theoretical and empirical analysis of one dimensional incompressible flows, empirical analysis of external and internal flows, and elementary boundary layer theory.								
Prerequisite(s)	Mech 236 – Dynamics II, ME 311 – Thermodynamics								
Corequisite(s)	None								
Required, Elective or Selected Elective	Required								
Required Materials	B. R. Munson, D. F. Young, T. H. Okiishhi & W. W. Huebsch. Fundamentals of Fluid Mechanics, 6 th Edition, Wiley, NY, 2009.								
Supplemental materials (not Required)	None								
Computer Usage	Some problems may require use of software such as MATLAB or MathCad.								
Course Learning	Course Learning Outcomes	SOs*	Expected Performance Criteria						
Outcomes/ Expected Performance	1 evaluate surface forces and pressure difference for a static fluid	a, e, h, k	Exam Question (70% of the students will earn a grade of 70% or better on this question)						
Criteria:	2. apply the mechanical energy equation to a variety of physical systems.	a, c, e, h, k	Exam Question (70% of the students will earn a grade of 70% or better on this question)						
	3. apply the integral form of conservation laws to a variety of flows problems and obtain engineering design quantities, such as reaction forces and velocities.	a, c, e, h, k	Exam Question (70% of the students will earn a grade of 70% or better on this question)						
	4. form dimensionless groups and apply the resulting modeling laws to experimental data as well as a variety of engineering problems	a, e, h, k	Exam Question (70% of the students will earn a grade of 70% or better on this question)						
	5. apply the Navier-Stokes	a, c, e, k	Exam Question (70% of the						

	Equations to and cylindrica for velocity a	simple flows al geometries nd flow rate	in planar s, solve			students will earn a grade of 70% or better on this question)				
	 6 calculate engineering design quantities (shear stress, losses, volumetric flow rates, pressures, pumping power) for laminar and turbulent flows in pipes. 7. evaluate the drag characteristics and boundary layer parameters for laminar as well as turbulent flow 				a, c, e, h, k Exam Question (70% of students will earn a grade 70% or better on this ques					
					e, h,k	Exam Question (70% of the students will earn a grade of 70% or better on this question)				
	8. calculate to that is applicate flow situation	he drag coeff ble to a varies	ficient ety of	a, c, e k	e, h,	Exam Question (70% of the students will earn a grade of 70% or better on this question)				
Class Topics	 Definitions, fluid properties Fluid statics. Pressure variation and its application in manometry and resultant forces on planer and curved surfaces. Flow patterns. Streamlines, pathlines, etc. Eulerian and Lagrangian descriptions. Fluid acceleration, local and convective. Control volume analysis: Application of continuity, momentum and energy equations. Differential analysis. Euler's and Bernoulli's equations and application. Dimensional analysis: Dimensionless parameters and model studies (3hrs) Internal flows: Laminar and turbulent pipe flows. Boundary layer concepts, laminar and turbulent flows. Drag: Drag on two-dimensional bodies. 									
Student	a b	c d	e	f	g	h	i	j	k	
Outcomes (Scale: 1-3)	3	1	3			1			1	
(Deale , 1-5)	3 – Strongly supported 2 – Supported 1 – Minimally supported									

* Student Outcomes