Course Number	ME 439								
Course Title	Principles of Tribology								
Course Structure	(3-0-3) (lecture hr/wk - lab hr/wk – course credits)								
Course Coordinator	Dr A. Harnoy								
Course Description	An introduction to the principles of wear resistance of machine parts and tribology, Physical understanding of different mechanisms of wear and friction and methods of increasing durability.								
Prerequisite(s)	Chem 126 – General Chemistry II Mech 237 – Strength of Materials								
Corequisite(s)	None								
Required, elective or selected elective	Elective								
Required Materials	Harnoy, A. "Bearing Design in Machinery, Engineering Tribology and lubrication", publisher, Marcel Dekker Inc., 2003								
Other supplemental materials (not Required)	Szeri, A. Z., 1980, "Tribology; Friction, Lubrication and wear", <i>Hemisphere co</i> .								
Computer Usage	Computer Computations Computer graphics								
Course Learning Outcomes/ expected performance criteria:	Course Learning Outcomes	SOs*	Expected Performance Criteria						
	1 define the required properties of materials for bearings, and design a sliding bearing with compatible materials based on the mechanism of wear	a, c, k	Exam Question (80% of the students will earn a grade of 75% or better on this question)						
	2. analyze the operation of hydrodynamic bearing to find the maximum load	a, c, k	Homework Problem (80% of the students will earn a grade of 75% or better on this problem)						
	3. draw sketches for explaining the design of hydrodynamic and rolling element bearings in machines	a, c, k	Exam Question (80% of the students will earn a grade of 75% or better on this question)						

	4. apply the theory of elasticity to estimate the stresses in a point and line contact of rolling bearing						a, c, k	c, k Homework Problem (80% of the students will earn a grade of 75% or better on this problem)				
	5. design a rotating component in a machine, such as a gearbox, using appropriate bearings and materials						a, c, k (80% of the studer will earn a grade of 75% or better on the question)				ents of	
	6. analyze hydrostatic bearing using fluid mechanics, and mathematics for integration of pressure for the load capacity						a, c, k	(80%) will 75%	Final Exam Question (80% of the students will earn a grade of 75% or better on this question)			
	7. explain the operation, and use of a, c materials, in artificial joints, such hip joint and knee joint						a, c	Final Exam Question (80% of the students will earn a grade of 75% or better on this question)				
Class Topics	 Introduction to Tribology (surface, adhesion) Classification and selection of bearings Lubricants Characteristics and lubrication Hydrodynamic Lubrication Infinitely long and short bearing Friction Measurement laboratory (journal Bearing) Presentation of friction curves Friction Measurement laboratory (linear motion) Report on friction curves Bearing Material (Metals) The theory of Elastohydrodynamic (EHD) lubrications in Rolling Element Bearings Artificial Joints, Hip Joint and Knee joint Design project of bearing design (e.g. gearbox project) Design presentation of bearing design before class. 											
Student	a	b	c	d	e	f	g	h	i	j	k	
Outcomes (Scale: 1-3)	3		3								2	
(~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3 – Strongly supported 2 – Supported 1 – Minimally supported											

* Student Outcomes