COURSE NUMBER	ME 451								
COURSE TITLE	Introduction to Aerodynamics								
COURSE STRUCTURE	(3-0-3) (lecture hr/wk - lab hr/wk – course credits)								
COURSE COORDINATOR	P. Singh								
COURSE DESCRIPTION	This course introduces the student to the basic principles and properties of fluid flow around immersed bodies. Topics include the kinematics and dynamics of fluid fields, the thin airfoil, finite wing theory, and one-dimensional compressible flow.								
Prerequisite(s)	ME 304 – Fluid Mechanics ME 311 – Thermodynamics I								
COREQUISITE(S)	None								
Required, Elective or Selected Elective	Elective								
R EQUIRED MATERIALS	Kuethe and Chow, Foundations of Aerodynamics, 5 th Ed., J. Wiley.								
Other supplemental materials (not Required)	None								
COMPUTER USAGE	Matlab used for data								
Course Learning Outcomes/	Course Learning Outcomes	SOs [*]	Expected Performance Criteria						
EXPECTED PERFORMANCE CRITERIA:	1 describe the role of circulation in lift generation, and basic airfoil shapes that result in the generation of circulation	a,e,k	Exam Question (80% of the students will earn a grade of 75% or better on this question)						
	2. apply the Bernoulli's equation for irrotational flows to calculate the pressure distribution on the surface of a body	a,e,k	Exam Question (80% of the students will earn a grade of 75% or better on this question)						
	3. calculate the force acting on a body	a,c,e,k							
	4. use the principle of superposition of flows to construct complex flows	a,e,k	Homework Problem (80% of the students will earn a grade of 75% or better on this problem)						
	5. use the basic source, doublet and vortex flows to construct flow around bodies, such as a source,	a,c,e,k	Homework Problem (80% of the students will earn a grade of						

	vortex and rotating cylinder.						75% or better on this problem)						
	body	6. calculate the lift generated by a body when circulation around it is known						e,k Exam Question (80% of the students will earn a grade of 75% or better on this question)					
	mass, conse subso	7. demonstrate familiarity with the mass, momentum and energy conservation equations for subsonic and supersonic one- dimensional compressible flows						(v 7	Homework Problem (80% of the students will earn a grade of 75% or better on this problem)				
	:	8. design a converging-diverging nozzle for a given Mach number.						K					
		9. compute the Mach number for normal and oblique shock waves						e e	Exam Question (80% of the students will earn a grade of 75% or better on this question)				
CLASS TOPICS	 Physical properties of air, kinematics, and ideal fluids Euler's equation, and Bernoulli's equation for irrotational flows Superposition; source, doublet and vortex flows Flow past bodies, thin airfoil theory, Kutta-Joukowski theorem and finite-wing theory Governing equations for compressible fluids, energy relations One-dimensional compressible flows Flows in converging-diverging nozzles Prandtl-Meyer flow and Normal shock waves 												
STUDENT OUTCOMES	a	b	c	d	e	f	g	h	i	j	k		
(SCALE: 1-3)	3 3 2 3 – Strongly supported 2 – Supported 1 – Minimally supported												

* Student Outcomes