Course Number	ME 452								
Course Title	Dynamics of Space Flight								
Course Structure	(3-0-3) (lecture hr/wk - lab hr/wk – course credits)								
Course Coordinator	A.D. Rosato								
Course Description	An introduction to the mechanics of space flight. After a brief introduction to the physics of the solar system, the dynamics of space flight are developed from the Newtonian viewpoint. Covers the performance and propulsion methods of rocketry.								
Prerequisite(s)	Mech 236 – Dynamics; Math 222 – Differential Equations								
Corequisite(s)	None								
Required, Elective or Selected Elective	Elective								
Required Materials	H. D. Curtis, <u>Orbital Mechanics for Engineering Students</u> (2 nd edition), Elsevier 2010								
Other supplemental materials (not Required)	Supplemental materials and notes e-mailed to students								
Computer Usage	None								
Course Learning Outcomes/ expected performance criteria:	Course Learning Outcomes	SOs [*]	Expected Performance Criteria						
	1 explain the equations for central force motion	a,e	Homework Problem (80% of the students will earn a grade of 75% or better on this problem)						
	2. explain the two-body problem and restricted three-body problem	a, c, e	Homework Problem (80% of the students will earn a grade of 75% or better on this problem)						
	3. describe Kepler's Laws of planetary motion	a	Exam Question (80% of the students will earn a grade of 75% or better on this question)						
	4. solve problems involving circular, elliptic, parabolic and hyperbolic orbit trajectories	a, e, k	Homework Problem (80% of the students will earn a grade of 75% or better on this problem)						

	5. solve problems involving Kepler's equation in terms of universal variables						a, e, k	Exam Question (80% of the students will earn a grade of 75% or better on this question)				
	6. explain the orbital elements in terms of the state vectora, e							Exam Question (80% of the students will earn a grade of 75% or better on this question)				
	orbit	7. solve problems to determine an orbit in 3 dimensions using orbital elementsa, c, k						Exam Question (80% of the students will earn a grade of 75% or better on this question)				
Class Topics	 Review of dynamics (linear and angular momentum, kinematics of a point mass). Motion equations in an inertial frame. Two-body problem & orbit equations derivation. Circular, parabolic, elliptic and hyperbolic orbits. Perifocal frame and restricted 3-body problem. Orbital position as a function of time. State vector and the geocentric frame – orbital elements. Transformation from geocentric equatorial to perifocal frame. Gibbs' method and Lambert's problem. 											
Student	а	b	с	d	e	f	g	h	i	j	k	
Outcomes (Scale: 1-3)	3		3		2						2	
(~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3 – St	3 – Strongly supported 2 – Supported 1 – Minimally supported										

* Student Outcomes