Industrial Engineering Program

1. COURSE NUMBER	IE 439 – Deterministic Models in Operations Research
AND NAME	
2. CREDITS AND	3 Credits. 3 Contact Hours
CONTACT HOURS	
3. COURSE	Wengbo (Selina) Cai
INSTRUCTOR	
4. TEXT BOOK	Hillier & Liebermann, Introduction to Operations Research, 8 th Ed. McGraw-Hill
4A. OTHER MATERIAL	
5A. CATALOG	The deterministic techniques of operations research. Topics include the
DESCRIPTION	applications of linear, nonlinear, integer, and dynamic programming
	methods and network flows analysis to solve industrial and systems
	engineering problems.
5B. PREREQUISITES	Math 222 or equivalent.
5C. REQUIRED,	Required
ELECTIVE OR	
SELECTED ELECTIVE	
6A. SPECIFIC	The students will:
OUTCOMES OF	1 Identify the appropriate analytical tool to solve a real world optimization
INSTRUCTION	problem (a).2 Solve LP, IP, DP and network problems (k).
	 2 Solve LP, IP, DP and network problems (k). 3 Learn the difficulties associated with large scale optimization (i, j)
	5 Learn the unneutres associated with large scale optimization (1, j)
6B. CRITERION 3	The mapping of the three (3) outcomes of instruction of item 6A to the
OUTCOMES ADDRESSED	Criterion 3 outcomes (a-k) is as follows:
	1. Satisfies Criterion 3 outcome a.
	 Satisfies Criterion 3 outcome k.
	3. Satisfies Criterion 3 outcomes i and j.
7. TOPICS COVERED	1. Introduction and overview of deterministic models
	2. Preliminaries of linear programming and its formulation
	3. Graphical solution of LP and introduction to simplex method
	4. The big M method. The dual problem.
	5. Sensitivity analysis, marginal utility
	6. Computer applications and LP packages
	7. Transportation and assignment problems

8. Network and graph theory introduction, spanning trees
9. Shortest route algorithm, Kijkstra's algorithm
10. Formulation of shortest path as LP
11. Maximum flow algorithms
12. Nonlinear programming, classical optimization
13. Integer programing introduction
14. Gomoty's cutting plane
15. Branch and bound method. Complete methods
16. Dynamic programming, recursive relationship of DP