Industrial Engineering Program

1. Course Number	IE 449 – Industrial Robotics
AND NAME	
2. CREDITS AND	3 Credits. 4 Contact Hours
CONTACT HOURS	
3. Course	Kevin McDermott
Instructor	
4. TEXT BOOK	Fuller, J. L., Robotics Programming and Projects, 2 nd Ed., Prentice Hall, 1992
4A. OTHER MATERIAL	Robot manuals and videos
5A. CATALOG	Robotics in manufacturing systems. The field of robotics is studied with
DESCRIPTION	emphasis given to the role of programmable robots in manufacturing.
	Hands-on experience with hardware and software necessary for various
	industrial robot systems through laboratory experience.
5B. Prerequisites	CS 101, Phys 121, junior or senior standing.
5C. REQUIRED,	Elective
ELECTIVE OR	
SELECTED ELECTIVE	
6A. SPECIFIC	The students will:
OUTCOMES OF	1 Learn to program robots using code and teach pendants (a, k).
Instruction	2 Be able to identify safety, economic and social issues associated
	with robotization (c).
	3 Be able to identify and list robots, end effectors, and robot functions
	(j, k).
	4 Be able to do design and develop in groups and individually robotic
	work cells (a, b, d, k).
(D. Chrimpion 2	
6B. CRITERION 3	The mapping of the four (4) outcomes of instruction of item 6A to the
OUTCOMES ADDRESSED	Criterion 3 outcomes (a-k) is as follows:
	1. Satisfies Criterion 3 outcomes a and k.
	2. Satisfies Criterion 3 outcome c.
	3. Satisfies Criterion 3 outcomes j and k.
	4. Satisfies Criterion 3 outcomes a, b, d and k.
7. TOPICS COVERED	Robot uses in manufacturing
7. TOTICS COVERED	2. Robot anatomy and classifications
	3. IBM Robutor, robotic term project
	4. End effectors, gripper, pick-up devices
	5. Robotizing a process, orientation and control devices
	6. Electronic control of robots, die casting applications
	7. Reliability, maintenance and safety
	8. Justification, investment casting application
	9. Sociological impact of robots, forging applications
	1

10. Mobil robots, NJIT's flexible manufacturing system

LABS

- I. Microbot robots
- II. IBM Robotur
- III. Fanuc robots, Prab robot, Motion Mate robot
- IV. Organizing to support robots, art welding applications
- V. Productivity and robotics, economic factors, equipment
- VI. Robot attributes, tactile sensing, vision sensing, press work applications