COURSE NUMBER	ME 425
COURSE TITLE	Finite Element Method in Mechanical Engineering
COURSE STRUCTURE	(3-0-3) (lecture hr/wk - lab hr/wk – course credits)
COURSE COORDINATOR	S. Chester
COURSE DESCRIPTION	Introduction to central ideas underlying the finite element method in
	mechanical engineering and its computer implementation. Fundamental concepts such as interpolation functions for one- and two –dimensional elements, bar element method, Galerkin's method, discretization of a
	model, methods of assembling global matrices, and the final solution
	techniques for obtaining nodal values. Specific applications to
	mechanical engineering problems in trusses, beams, torsion, heat
	transfer, fluid flow, plane stress, and plane strain.
PREREQUISITE(S)	CIS 101 – Computer Programming and Problem Solving
	Main 222 – Differential Equations
	Flactive
ELECTIVE ,	
ELECTIVE	
CODEOUISITE(S)	None
REGIMED MATERIALS	Introduction to Finite Element Analysis and Design
REQUIRED MATERIALS	By Nam-Ho Kim and Bhayani V. Sankar
	Publisher: John Wiley & Sons, Inc. 2009
Othersupplemental	Hand out lecture note with examples
materials	T
COMPUTER USAGE	ANSYS software is used to solve projects.
COURSE LEARNING	By the end of the course students should be able to:
OUTCOMES	
	1. derive 1-D element matrix equation for bar under tension and heat transfer type problem $(1, 2, 5, 6)$
	2 apply the steps required for FFM solution to variety of physical
	systems and obtain engineering design quantities. (1.2.5.7)
	3. use existing software (available from ME CAD room) such as
	ANSYS to work on projects. (1,2,3,6,7)
	4. select engineering design quantities (force, stress or heat flux)
	for truss, beam, plane stress or heat transfer problems. (1,2,6)
CLASS TOPICS	1. Introduction, spring and bar elements, element and global
	matrix equations, solution.
	2. Interpolation functions, potential energy, residual integral.
	3. Matrix algebra.
	4. Truss element formulation, element stiffness, assembled and
	condensed matrices.
	5. ANSYS – truss structure.
	6. Heat transfer in a fin, axial deformation of a bar using 3-
	node element. 7 Decembra demonte Haustite Interne Francti
	7. Beam and Frame elements, Hermite Interp. Functions.
	o. AND I D – Irane structure.

	9. Gaussian quadrature.
	10. 2-D elements, triangular and rectangular elements,
	isoparametric transformation.
	11. ANSYS – 2-D heat transfer.
	12. Potential flow and torsion of a solid bar.
	13. Plane elastic problems.
	14. 1-D time dependent problems.
	15. ANSYS – plane stress analysis.
Related Student	The Course Learning Outcomes (CLOs) support the achievement of
OUTCOMES	the following ME Student Outcomes of ABET Criterion 3 requirements
	Student Outcome 1 - an ability to identify, formulate, and solve
	complex engineering problems by applying principles of engineering,
	science, and mathematics.
	Related CLO – 1- 4
	Student Outcome 2 - an ability to apply engineering design to produce
	solutions that meet specified needs with consideration of public health,
	safety, and welfare, as well as global, cultural, social, environmental,
	and economic factors.
	Related CLO – 3-4
	Student Outcome 3 on ability to communicate offectively with a
	student Outcome 5 – an ability to communicate effectively with a
	Palated CLO 2
	Kelaled CLO – 5
	Student Outcome 5 on ability to function offectively on a team where
	members together provide leadership, create a collaborative, and
	inclusive environment establish goals plan tasks and most objectives
	inclusive environment, establish goals, plan tasks, and meet objectives
	Student Outcome 6 on ability to develop and conduct appropriate
	superimentation analyze and interment data and use engineering indement
	to drow conclusions
	Related CL $\Omega = 1.2.3.4$
	Related CLO = 1,2,3,4
	Related CLO 3
	Student Outcome 7_{-} an ability to acquire and apply new knowledge as
	needed using appropriate learning strategies
	Related CLO – 3
[