COURSE NUMBER	ME 312			
COURSE TITLE	Thermodynamics II			
COURSE STRUCTURE	(3-0-3) (hrs/wk lecture – course credits)			
Course	H. V. Kountouras			
COORDINATOR COURSE DESCRIPTION PREREQUISITE(S)	A continuation of ME 311 including studies of irreversibility and combustion. Thermodynamic principles are applied to the analysis of power generation, refrigeration, and air-conditioning systems. Introduction to solar energy thermal processes, nuclear power plants, and direct energy conversion. ME311 – Thermodynamics I.			
COREQUISITE(S)	None			
REQUIRED, ELECTIVE, OR SELECTED ELECTIVE REQUIRED MATERIALS	Required Yunus A. Cengel and Michael A. Boles. THERMODYNAMICS: An			
NEQUIRED WIATERIALS	Engineering Approach , 7th Edition, McGraw-Hill, NY, 2002, ISBN 978-0-07-352932-5			
Other supplemental materials (not Required)	Yunus A. Cengel and Michael A. Boles. Property Tables Booklet/Thermodynamics, 6 TH Edition, McGraw-Hill, NY, 2006, ISBN-13: 978-0073277127			
COMPUTER USAGE	None			
Course Learning Outcomes/ expected	Course Learning Outcomes	SOs*	Expected Performance Criteria	
PERFORMANCE CRITERIA:	1. Apply the principles of thermodynamics to the optimal design of the basic energy conversion systems: power generation, refrigeration, air- conditioning, and combustion.	a, b, c, d, e, g, k	Design Project (80% of students will earn a grade of 75% or better on the project)	
	2. Use thermodynamic relations and the property tables and charts for the analysis of energy conversion systems in the course of their operation.	a, e, k	Exam Question (80% of students will earn a grade of 75% or better on this question)	
	3. Analyze, evaluate performance, and solve problems in gas, steam and refrigeration cycles (Otto, Diesel, Brayton, Rankine, Carnot, vapor-compression refrigeration etc,).	a, e, k	Exam Question (80% of students will earn a grade of 75% or better on this question)	

	 4. Discuss the social, economic, political, ethical and environmenta issues associated with power generation in the world. 5. Describe compositions of gas mixtures and determine the mixture properties to ideal and real gas 	a, e, k	Report (80% of students will earn a grade of 75% or better on this report)Exam Question (80% of students will earn a grade of 75% or better	
	mixtures as well as predict the behavior of the mixture based on Dalton's and Amagat's law.6. Apply the principles of the	a, e, j,	on this question) Exam Question (80%	
	conservation of mass and energy t various air-conditioning processes of atmospheric air.	o k	of students will earn a grade of 75% or better on this question)	
	7. Apply conservation of mass and energy to fuel in the combustion of reacting systems.		Exam Question (80% of students will earn a grade of 75% or better on this question)	
	 8. Develop the general relations for compressible flows and concepts of stagnation state, Mach number, isentropic flows as well as effect of area changes on supersonic and subsonic flows. 	of	Exam Question (80% of students will earn a grade of 75% or better on this question.	
	9. Apply the first and the second laws of thermodynamics to the optimization of the basic energy conversion systems	a, b, c, d, e, g, k	Design Project (80% of the students will earn a grade of 75% or better on the project)	
CLASS TOPICS	 Gas Power Cycles. Vapor Power Cycles. Refrigeration Cycles. Gas Mixtures. Gas-vapor Mixtures and Air-conditioning. Chemical Reactions. Thermodynamics of High-speed Gas Flow. Review. 			
Student Outcomes		f g	h i j k	
(SCALE: 1-3)		2 3 Supported 1	2 2 2 2 - Minimally supported	

* Student Outcomes