## Numerical Control (NC) and The A(4) Level of Automation

Chapter 40

**ME-215 Engineering Materials and Processes** 

### 40.1 Introduction

- Numeric Control (NC) and Computer Numeric Control (CNC) are means by which machine centers are used to produce repeatable machining process.
- Two types are used:
  - Fixed Automation using mechanical cam
  - Flexible Automation using G Code
- The control programs use either
  - Closed loop control using feedback
  - Or Open loop control

ME-215 Engineering Materials and Processes

#### NC Machines



FIGURE 26-1 Early NC machine tools were controlled by paper tape. Soon onboard computers were added, followed by tool changers and pallet changers.



#### ME-215 Engineering Materials and Processes

### Open Loop versus Closed Loop

Open loop Table 0 0 Part Machine control Ballscrew unit (MCU) Nut Drive motor Typical feedback: none Closed loop-motor feedback Table 0 0 MCU compares 0 0 Drive motor actual position Part to desired position Encoder Typical feedback: motor has turned 1.003 revolutions Closed loop-ball-screw feedback Table MCU 0 Drive motor Encoder measures Part position of table Input Feedback Encoder Typical feedback: ball screw has turned 1.003 revolutions Closed loop-worktable position feedback Table .ec MCU 0 Drive motor Part Command Feedback Glass scale or Typical feedback: table has moved 0.012 (0.3 mm) Pinion encoder

**FIGURE 26-2** Open-loop NC versus three position control schemes for NC and CNC machine to

ME-215 Engineering Materials and Processes

#### Example of G Code

**FIGURE 26-3** The tool paths necessary to rough and finish turn a part in a CNC lathe are computer generated using G codes.



ME-215 Engineering Materials and Processes

### History of NC

- Machine Centers have been in development over the last 60 years, with significant support from the USAF
- NC has impacted tool design, requiring tools with greater strength and higher temperature resistance
- New NC coding software has removed the earlier need for highly trained programmers, broadening the use of NC to most manufacturing facilities
- Today, a majority of the machines use Distributed Numeric Control, eliminating the need for paper tapes and large onboard processors

ME-215 Engineering Materials and Processes

#### Machine Center



**FIGURE 26-4** Horizontal machining center with four-axis control (*X*, *Y*, *Z*, *R* table) receives inputs to the control panel from

many sources.

ME-215 Engineering Materials and Processes

# Flexible Manufacturing Systems (FMS)

- FMS enables products to take random paths through the machines
- The system used automated conveyors and NC machines to move parts through a shop, accounting for the variability of machine time for different parts.
- As a part reaches a machine, the appropriate code and tools are used for the part, the central system schedules the parts/machines based on production rate needs.

### FMS Diagram

**FIGURE 26-5** An example of a sophisticated FMS developed for machining aircraft parts. A wireguided cart called an AGV (automated guided vehicle) is used to transport pallets from the unload/load station to the machines



#### ME-215 Engineering Materials and Processes

#### **FMS** Features

#### TABLE 26-1 Common Features of Flexible Manufacturing Systems

Pallet changers

Multiple machine tools: NC or CNC

Automated material handling system (to deliver parts to machines)

Computer control for system: DNC

Multiple parts: Medium-sized lots (200-10,000) with families of parts

Random sequencing of parts to machines (optional)

Automatic tool changing

Inprocess inspection

Parts washing (optional)

Automated storage and retrieval (optional, to deliver parts to system)

ME-215 Engineering Materials and Processes

#### Examples of FMS



ME-215 Engineering Materials and Processes

### Examples of FMS



FIGURE 26-6 Examples of machining centers—FMC and FMS

designs.

ME-215 Engineering Materials and Processes

#### 40.2 Basic Principles of Numerical Control

- NC uses processing language to control the movement of the cutting tool, workpiece or both
- NC machines can duplicate parts with repeatability and accuracy improved over conventional machining.
- NC greatly increases the productivity of a single shop
- Setup and fixturing can be made more universal, decreasing setup time, increasing production rates.
- Greater accuracy and precision does not necessarily translate into higher cost

#### Motion Control in NC Machines



**FIGURE 26-7** The part (above) to be machined on the NC machine (below) has a zero reference point. The machine also has a zero reference point.



ME-215 Engineering Materials and Processes

### How CNC Machines Work

- CNC use two forms of control
  - 1. Point to Point: which is typically open loop control
  - 2. Contouring: which is typically closed loop control
- CNC machines typically have a Machine Control Unit (MCU) on board that takes input from the data processing unit (DPU) and control-loop unit (CLU) to move the position of each axis and direction of feed, to produce the final product.

ME-215 Engineering Materials and Processes

#### **CNC** Motion Control



(milling machines, welding)

FIGURE 26-8 NC and CNC systems are subdivided into two basic categories: point-to-point controls or contouring controls.

Contouring control (machining centers)

ME-215 Engineering Materials and Processes

#### **Control Schematic for CNC**



ME-215 Engineering Materials and Processes

### Motion Control

- NC machines use electric motor drives with position feedback provided by transducers.
- Older system used DC motors with analog transducers
- Newer system use AC servomotors, or stepper motors with optical encoders for better accuracy, reliability, lower power consumption and performance to weight ratios.
- Recirculating ball screws drives or linear accelerators help improve accuracy by removing backlash in the drive systems
- Canned program routines are used when repeated common features are used in the part designs

#### **Ball Screw Details**



**FIGURE 26-10** The ball lead screw shown in detail provides great accuracy and position to NC and CNC machine tools.

ME-215 Engineering Materials and Processes

#### **Canned Routines**

Rectangular pocket milling First side Second side Control menu asks for: length length Setup clearance Milling depth · Roughing depth · Feed rate for roughing · First side length Setup clearance · Second side length Roughing depth Milling depth Feed rate · Direction or rotation Peck drilling Control menu asks for: Setup clearance Pecking depth · Total hole depth Pecking depth · Pecking depth · Dwell time (seconds) Total hole depth Feed rate Tapping Control menu asks for: Setup clearance Setup clearance · Total hole depth Total · Dwell time hole (seconds) depth · Feed rate

Source: Heidenhain Corn. (Flk Grove Village, IL.)

FIGURE 26-11 Canned or preprogrammed machining routines greatly simplify programming CNC machines. (Courtesy of Heidenkain Corporation, Elk Grove Village, ILL.)

ME-215 Engineering Materials and Processes

#### **Tool Dimensioning**



**FIGURE 26-12** The location of the corner of the end mill (left) or the tip of a single-point tool (right) must be known with respect to the tool setting points so that tool dimensions are accurately set.

ME-215 Engineering Materials and Processes

### Part Programming

- NC coding uses a common language.
- Programmers must first establish a reference or zero point.
- Next the part is programmed, defining each step necessary to produce the part.
- Each step defines the x, y, and z location, plus the spindle speed, feed speed, and tool changes from the previous step.
- Following coding, the code is verified, typically by computer simulation
- Finally the code is fed into the machine, either by tape or computer interface



ME-215 Engineering Materials and Processes



**FIGURE 26-13** Example of programming a part in a vertical-spindle NC machine.

ME-215 Engineering Materials and Processes



ME-215 Engineering Materials and Processes



ME-215 Engineering Materials and Processes

#### Example Code for Part in Figure 26-13

|   | P1  | P2   | P3  | P4  | P5  | $\mathbf{P6}$ | <b>P</b> 7 | $\mathbf{P8}$ | <b>P</b> 9 | P10 | P11 |
|---|-----|------|-----|-----|-----|---------------|------------|---------------|------------|-----|-----|
| х | 190 | 190  | 100 | 100 | 70  | 70            | 10         | 10            | 20         | 160 | 130 |
| у | 10  | 1.30 | 130 | 105 | 105 | 130           | 130        | 20            | 10         | 100 | 45  |
| Ζ | 20  | 20   | 20  | 20  | 20  | 20            | 20         | 20            | 20         | 20  | 10  |

- G01 Y130 F200
- G01 X100
- G01 X105 F150
- G02 X70 Y105 R15
- G01 Y130 F200
- G01 X10
- G01 Y20
- G03 X20 Y10 R10 F150
- G01 X190 F200
- G00 X160 X100
- G01 Z20 F150
- G01 X130 Y45 Z10
- G01 Z35 F200
- G00 X300 Y300

Straight line from starting point to P2

- Straight line from P2 to P3
- Straight line from P3 to P4
- Radial arc, clockwise, with 15 radius
  - Straight line from P5 to P6
  - Straight line from P6 to P7

  - Straight line from P7 to P8
  - Radial arc, counterclockwise with 10 radius
  - Straight line from P9 to P1
  - Rapid traverse to point P10
  - Down feed at point P10
  - Straight line from P10 to P11
  - Strangint line from 1 to to 1 11
  - Retraction from workpiece
  - Rapid traverse away from workpiece

ME-215 Engineering Materials and Processes

### NC Program Language

| TABLE 26-2 Definitions of Common NC Words |                                                                                                                        |  |  |  |  |  |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| NC Word                                   | 8                                                                                                                      |  |  |  |  |  |
| N                                         | Sequence number: identifies the block of information                                                                   |  |  |  |  |  |
| G                                         | Preparatory function: requests different control functions, including preprogrammed machining routines                 |  |  |  |  |  |
| X, Y, Z, B                                | Dimensional coordinate data: linear and angular motion commands for the axis of the machine                            |  |  |  |  |  |
| F                                         | Feed function: sets feed rate for this operation                                                                       |  |  |  |  |  |
| S                                         | Speed function: sets cutting speed for this operation                                                                  |  |  |  |  |  |
| Т                                         | Tool function: tells the machine the location of the tool in the tool holder or tool turret                            |  |  |  |  |  |
| М                                         | Miscellaneous function: turns coolant on or off, opens spindle, reverses spindle, tool change, etc.                    |  |  |  |  |  |
| EOB                                       | End of block: indicates to the MCU that a full block of information has been transmitted and the block can be executed |  |  |  |  |  |

ME-215 Engineering Materials and Processes

#### Cutter Offset



**FIGURE 26-14** Two classic problems in NC programming are the determination of cutter offset and interpolation of cutter parts.

ME-215 Engineering Materials and Processes

#### 40.3 Machine Center Features and Trends

- MC's range from simple 2 axis systems to large multi-axis systems.
- System features can be very simple to systems that include automated tool change and workpiece transfer
- MC system are not limited to milling, but include:
  - Turning centers
  - Punching and Blanking centers
  - EDM centers
  - Laser centers
  - Water jet centers
  - Flame cutting centers

#### Large Multi-axis MC



FIGURE 26-15 Modern machining centers will typically have horizontal spindles with rpms up to 15,000, dual pallets, and cutting-tool magazines holding 40 to 100 tools.

#### ME-215 Engineering Materials and Processes

#### **Turning Center**



FIGURE 26-16 This CNC turning center has a multiple-axis capability with two spindles and a 12-tool turret with X, Y, and Z control as well as axis control of the spindles.

ME-215 Engineering Materials and Processes

#### **Process Accurcy**



**FIGURE 26-17** Process capability in NC machines is affected by many factors.

ME-215 Engineering Materials and Processes

#### Probes



(b)

ME-215 Engineering Materials and Processes

#### 40.4 Ultra-High-Speed Machining Centers (UHSMCs)

- UHSMCs are used to rapidly produce dies
- They include exceptionally high spindle speeds and material removal rates
- They utilize ceramic ball bearings to improve spindle stiffness and spindle speeds.

**ME-215 Engineering Materials and Processes** 

#### UHSMC versus Traditional Die Manufacturing



ME-215 Engineering Materials and Processes

#### **UHSMC** Trends

FIGURE 26-20 Ultra-highspeed machining centers (UHSMCs) are being developed with ceramic ball

bearings in the spindles, synchronized ball screws on the X-axis to reduce distortion (due to inertia) in the moving components. ("Development of Ultra High Speed Machining Center", Toyota Technical Review, vol. 49, No. 1, September 1999.)





**Capabilities of Machining Centers** 



Feed Mechanism of Conventional (x-axis) MC vs UHSMC

ME-215 Engineering Materials and Processes