Fundamentals of Machining/Orthogonal Machining

Chapter 20

ME-215 Engineering Materials and Processes

20.1 Introduction

ME-215 Engineering Materials and Processes

processes.

ME-215 Engineering Materials and Processes

20.2 Fundementals

ME-215 Engineering Materials and Processes

FIGURE 20-2 The

seven basic machining processes used in chip formation.

ME-215 Engineering Materials and Processes

FIGURE 20-3 Turning a cylindrical workpiece on a lathe requires you to select the cutting speed, feed, and depth of cut.

ME-215 Engineering Materials and Processes

				High Speed Steel Tool		Carbide Tool							
							Uap	botec		Conted		Same	
Material	Hard-	Same and	Depth of Cut* in mm				Speed			Tool		- 161152	Tool
	Eba	Condition		fpm m/min	ipr mm/r	Tool Material AISI ISO	Brazed fpm m/min	able Ipm m/min	ige min/r	Grade C ISO	speed spen m/min	ipe mm/r	Materia Grade C ISO
I. FREE MACHINING CARBON STEELS, WROUGHT (cont.) Median Carbon Leaded (cont.) (materials listed on preceding page)	225 50 275	Hot Rolled, Normalized, Annealed, Cold Drawn or Quenched and Tempered	.040 .150 .300 .625 1 4 8 16	160 125 100 80 49 38 39 24	.008 .015 .020 .000 .29 .49 .59	M2, M3 M2, M3 M2, M3 M2, M3 S4, S5 S4, S5 S4, S5 S4, S5 S4, S5	500 390 300 240 150 129 95 75	620 490 375 290 185 145 115 88	.007 .009 .009 .009 .15 .59 .75 1.0	C-7 C-6 C-6 P10 P30 P30 P40	925 600 500 280 185 159 	.007 .015 .020 .18 .49 .59	CC-7 CC-6 CC-6 CP10 CP30 CP30 CP30
	275 10 325	Hot Rolled, Normalized, Annealed of Quenched and Tempered	.040 .150 .500 .625 1 4 8 16	138 105 85 -1 32 26 -	.007 .015 .000 .18 .40 .50	115, M42' 115, M42' 115, M42' 59, 511' 59, 511' 59, 511'	460 350 275 40 145 81 -	51,52 (S) 55,52 (S)	.007 .000 .000 .18 .59 .75	C76 C4 19 22 1	825 525 42 19 19 19 19 10	007 015 021 15 49 5	CC-6 CC-6 CP10 CP20 CP20 CP20 CP20
	325 10 375	Quenched and Tempered	040 .150 .300 .625 1 4 8 16	10 80 50 10 24 20 10	.007 .055 .020 .15 .49 .59	115, M42' 115, M42' 115, M42' 58, 511' 59, 511' 59, 511'	390 300 230 139 99 79 	480 375 29 15 115 8	.007 .009 .009 .009 	555 I 1922 I	725 475 375 220 145 115 	.007 .015 .020 .18 .49 .59	CC4 CC4 CC4 CP10 CP30 CP30 CP30
	375 to 425	Quenched and Tempered	.040 .150 .300 .625 1 4 8 16	70 55 45 	.000 .015 .000 .18 .49 .59	T15, M42' T15, M42' T15, M42' S9, S11' S9, S11' S9, S11'	325 250 200 500 76 60	400 310 240 129 95 73	.007 .000 .000 	C7 C6 C6 P10 P20 P30	600 400 325 183 129 199	.007 .015 .020 .18 .49 .59	CC-7 CC-6 CC-6 CP10 CP30 CP30 CP30

FIGURE 20-4 Examples of a table for selection of speed and feed for turning. (*Source:* Metcut's Machinability Data Handbook.)

			10	-	-	· inde			1.11	100		~	-
CARBON STEELS, WROUGHT Low Carbon		Hot Rolled,	.040 .150 .300	185 145 115 90	.007 .015 .020	M2, M3 M2, M3 M2, M3 M2, M3	535 435 340 265	700 540 420	007 000 000	C7 C6 C6 C6	1050 700 550	.007 .015 .020	CC-7 CC-6 CC-6
1005 1012 1023 1005 1012 1023 1008 1015 1025 1009 1017	10 125	Annealed or Cold Drawn	1 4 8 16	56 44 35 27	.18 .40 .50 .75	54.55 54.55 54.55 54.55	165 135 105 81	215 165 130 100	.18 .50 .75 1.0	P10 P20 P30 P40	320 215 170	.18 .40 .50	CP10 CP20 CP30
	125 10 175	Hot Rolled, Normalized, Annealed or Cold Drawn	.040 .150 .300 .425 1 4 8 16	150 125 100 80 44 88 94 14	.007 .015 .000 .030 .18 .40 .50 .75	M2, M3 M2, M3 M2, M3 M2, M3 S4, S5 S4, S5 S4, S5 S4, S5	485 410 320 245 150 125 100 75	640 500 390 395 195 159 129 95	.007 .000 .000 .000 .18 .59 .75 L0	C-7 C-6 C-6 P10 P30 P40	950 625 500 190 190 150	.007 .015 .020 .18 .49 .59	CC-7 CC-6 CC-6 CP10 CP20 CP30
	175 10 225	Hot Rolled, Normalized, Annealed or Cold Drawn	040 150 305 4 8 16	145 115 575 4 55 25 25 25 25 25 25 25 25 25 25 25 25 2	007 015 000 000 .18 .59 .75	M2, M3 M2, M3 M2, M3 M2, M3 S4, S5 S4, S5 S4, S5 S4, S5 S4, S5	460 385 300 235 149 115 90 72	570 450 350 265 175 135 195 81	007 000 000 040 040 040 040 059 05 05 05 05 05 05 05 05 05 05 05 05 05	C-7 C-6 C-6 P10 P30 P30 P40	850 550 450 250 179 135 	.007 .015 .020 .15 .49 .59	CC-7 CC-6 CC-6 CP10 CP20 CP20 CP20
	215 50 275	Annesied or Cold Drawn	040 150 300 625 1 4 8 16	125 95 75 80 88 29 25 18	007 015 020 030 .18 .40 .59 .75	M2, M3 M2, M3 M2, M3 M2, M3 S4, S8 S4, S8 S4, S8 S4, S8 S4, S8	410 360 285 220 125 110 87 67	510 400 315 240 155 120 95 75	007 000 000 18 59 75 1.9	C-7 C-6 C-6 P10 P20 P30 P30	750 500 400 	.007 .015 .020 .15 .29	CC4 CC4 CP10 CP30 CP30

See section 15.1 for Tool Geometry-

*Caution: Check Horsepower requirements on heavier depths of cut.

See section 16 for Cutting Fluid Recommendations.

⁺Any promium HSS (T15, M33, M41-M47) or (\$9, \$10, \$11, \$12).

FIGURE 20-4 Examples of a table for selection of speed and feed for turning. *(Source:* Metcut's Machinability Data Handbook.*)*

FIGURE 20-5 Relationship of speed, feed, and depth of cut in turning, boring, facing, and cutoff operations typically done

on a lathe.

-L-+

Turning

Speed, stated in surface feet per minute (sfpm), is the peripheral speed at the cutting edge. Feed per revolution in turning is a linear motion of the tool parallel to the rotating axis of the workpiece. The depth of cut reflects the third dimension.

L = length of cut $T_m = \frac{L+A}{f_r N_s}$

Boring

Enlarging hole of diameter D_1 to diameter D_2 . Boring can be done with multiple cutting tools. Feed in inches per revolution, f_r .

Tool feeds to center of workpiece so L = D/2. The cutting speed is decreasing as the tool approaches the center of the workpiece.

Grooving, parting, or cutoff

Tool feed perpendicular to the axis of rotation. The width of the tool produces the depth of cut (DOC).

Veljko Samardzic

ME-215 Engineering Materials and Processes

Parameter	ter Turning Milling		Drilling	Broaching		
Cutting speed, fpm	$V = 0.262 \times D_I \times V = 0.262 \times D_m \times rpm$ rpm		$V = 0.262 \times D_d \times rpm$	V		
Revolutions per minute, N _s	$rpm = 3.82 \times V_c/D_I$	$rpm = 3.82 \times V_c/D_m$	$rpm = 3.82 \times V_c/D_d$			
Feed rate, in./min	$f_m = f_r \times rpm$	$f_m = f_t \times rpm$	$f_m = f_r \times rpm$			
Feed per rev tooth pass, in./rev	f_r	f_{i}	f_r	3. <u></u>		
Cutting time, min, T _m	$T_m = L/f_m$	$T_m = L/f_m$	$T_m = L/f_m$	$T_m = L/12V$		
Rate of metal removal, in. ³ /min	$\frac{\text{MRR}}{\times V_c} = 12 \times d \times f_r$	$MRR = w \times d \times f_m$	$\frac{MRR}{\times f_m} = \pi D^2 d/4$	$\frac{MRR}{\times V} = 12 \times w \times d$		
Horsepower required at spindle	$hp = MRR \times HP_s$	$hp = MRR \times HP_s$	$hp = MRR \times HP_s$	23 19 2 - 19 2		
Horsepower required at motor	$\begin{array}{l} hp_m = MRR \times \\ HP_s/E \end{array}$	$hp_m = MRR \times HP_s/E$		$hp_m = MRR \times HP_s / E$		
Torque at spindle	$t_s = 63,030$ hp/rpm	$t_s = 63,030$ hp/rpm	$t_s = 63,030$ hp/rpm	20		
Symbols	D_I = Diameter of workpiece in turning, inches D_m = Diameter of milling cutter, inches D_d = Diameter of drill, inches d = Depth of cut, inches E = Efficiency of spindle drive f_m = Feed rate, inches per minute f_r = Feed, inches per revolution f_t = Feed, inches per tooth hpm = Horsepower at motor MPR = Metel removal rate in ³ /min			hp = horsepower at spindle L = Length of cut, inches n = Number of teeth in cutter HP _s = Unit power, horsepower per cubic inch per minute, specific horsepower N_s = Revolution per minute of work or cutter t_s = Torque at spindle, inch-pound T_m = Cutting time, minutes V = Cutting speed, feet per minute		

TABLE 20-1 Shop Formulas for Turning, Milling, Drilling, and Broaching (English Units)

Values for specific horsepower (unit power) are given in Table 20-4.

Slab milling - multiple tooth

Slab milling is usually performed on a horizontal milling machine. Equations for T_m and MRR derived in Chapter 25.

The tool rotates at rpm N_s . The workpiece translates past the cutter at feed rate f_m , the table feed. The length of cut, L, is the length of workpiece plus allowance, L_A ,

$$L_A = \sqrt{\frac{D^2}{4} - \left(\frac{D}{2} - d\right)^2} = \sqrt{d(D-d)}$$
 inches

 $T_m = (L + L_A)/f_m$

The MRR = Wdf_m where W = width of the cut and d = depth of cut.

Face milling Multiple-tooth cutting

Given a selected cutting speed V and a feed per tooth f_t , the rpm of the cutter is $N_s = 12V/\pi D$ for a cutting of diameter D. The table feed rate is $f_m = f_t nN_s$ for a cutter with n teeth.

The cutting time, $T_m = (L + L_A + L_o)/f_m$ where $L_o = L_A = \sqrt{W(D - W)}$ for W < D/2or $L_o = L_A = D/2$ for $W \ge D/2$. The MRR = Wdf_m where d = depth of cut.

ME-215 Engineering Materials and Processes

FIGURE 20-6 Basics

of milling processes

(slab, face, and end

equations for cutting

removal rate (MRR).

milling) including

time and metal

Drilling multiple-edge tool

FIGURE 20-7 Basics of the drilling (hole-making) processes, including equations for cutting time and metal removal rate (MRR).

Select cutting speed V, fpm and feed, fr, in./rev. Select drill.

D = diameter of the drill which rotates 2 cutting edges at rpm N_s . V = velocity of outer edge of the lip of the drill.

 $N_s = 12 V/\pi D$. $T_m = \text{cutting time} = (L + A)/f_r N_s$ where f_r is the feed rate in in. per rev. The allowance A = D/2.

The MRR = $(\pi D^2/4) f_r N_s \text{ in.}^3$ /min which is approximately $3DVf_r$.

ME-215 Engineering Materials and Processes

The T_m for broaching is $T_m = L/12V$. The MRR (per tooth) is 12tWVin.³/min where V =cutting velocity in fpm, W is the width of cut, t = rise per tooth.

FIGURE 20-8 Process basics of broaching. Equations for cutting time and metal removal rate (MRR) are developed in Chapter 26

ME-215 Engineering Materials and Processes

FIGURE 20-9 (a) Basics of the shaping process, including equations for cutting time (*Tm*) and metal removal rate (MRR). (b) The relationship of the crank rpm *Ns* to the cutting velocity *V*.

The tool cuts at velocity V with a return velocity of V_R dictated by the rpm of the crank, N_S . The cutting speed $V = (I + A)N_S/12R_S$ where R_S = stroke ratio = 200°/360° and the length of stroke is I = L + ALLOW. The tool feed is f_c inches per stroke. $T_m = W/N_S f_c$ MRR = $L dN_S f_c$ in³/min

ME-215 Engineering Materials and Processes

Operation	Block diagram	Most commonly used machines	Machines less frequently used	Machines seldom used
Turning	Work Tool	Lathe NC lathe machining center	Boring mill	Turret lathe
Grinding	(Work	Cylindrical grinder		Lathe (with special attachment)
Sawing (of plates and sheets)	Tool Work	Contour or band saw	Laser Flame cutting Plasma arc	
Drilling	Work De	Drill press Machining center (nc) Vert. milling machine	Lathe Horizontal boring machine	Horizontal milling machine Boring mill
Boring	Work De-	Lathe Boring mill Horizontal boring machine Machining center		Milling machine Drill press

FIGURE 20-10 Operations and machines used for machining cylindrical surfaces.

ME-215 Engineering Materials and Processes

FIGURE 20-10 Operations and machines used for machining cylindrical surfaces.

ME-215 Engineering Materials and Processes

	Operation	Block diagram	Most commonly used machines	Machines less frequently used	Machines seldom used
	Facing	Work	Lathe	Boring mill	
	Broaching	Work	Broaching machine		Turret broach
	Grinding	Work Tool	Surface grinder		Lathe (with special attachment)
	Sawing	Work	Cutoff saw	Contour saw	
	Shaping	Work	Horizontal shaper	Vertical shaper	
	Planing	Tool	Planer		
	Milling	slab milling	Milling machine	Lathe with special milling tools	
FIGURE 20-11 Operation and machines used to generate flat surfaces.	S	face milling Work	Milling machine Machining center	Lathe with special milling tools	Drill press (light cuts)

ME-215 Engineering Materials and Processes

20.3 Energy and Power in Machining

ME-215 Engineering Materials and Processes

TABLE 20-2	Basic Machining	Process					
Applicable	Raw Material	Size		Typical Production	Material	Typical	Typical Surface
Process	Form	Maximum	Minimum	Rate	Choice	Tolerance	Roughness
Turning (engine lathes)	Cylinders, preforms, castings, forgings	78 in. dia. × 73 in. long	占 in. typical	1-10 parts/bour	All ferrous and nonferrous material considered machinable	±0.002 in. on dia. common; ±0.001 in. obtainable	125-250
Turning (CNC)	Bar, rod, tube, preforms	36 in. dia. × 93 in. long	ģ in, dia.	1-2 parts/minute to 1-4 parts/hour	Any material with good machinability rating	±0.001 in, on dia. where needed; ±0.0005 in, possible	63 or better
Turning (automatic screw machine)	Bar, rod	Generally 2 in. dia. × 6 in. long	¹ / ₂ in. dia. and less, weight less than 1 ounce	10-30 parts/minute	Any material with good machinability rating ±0.001 to ±0.003 in.	±0.0005 in, possible ±0.001 to ±0.003 in, common	63 average
Turning (Swiss automatic muchining)	Rod	Collets adapt to	Collets adapt to less than [in.	12-30 parts/minute	Any material with good machinability rating	±0.0002 in, to ±0.001 in, common	63 and better
Boring (vertical)	Casting, preforms	$98~{\rm in}_{\rm i} \times 72~{\rm in}_{\rm i}$	2 in, × 12 in.	2-20 hours/piece	All ferrous and nonferrous	±0.0005 in.	90-250
Milling	Bar, plate, rod, tube	4-6 ft long	Limited usually by ability to hold part	1-100 parts/bour	Any material with good machinability rating	±0.0005 in: possible; ±0.001 in: common	63-250
Hobbing (milling gears)	Blanks, preforms, rods	10-ft-dia. gears 14-in, face width	0.100 in dia.	1 part/minute	Any material with good machinability rating	± 0.001 in. or better	63
Drilling	Plate, bar, preforms	3¦-in-dia.drills (1-in-dia, normal)	0.002-in. deill dia.	2-20 second/hole after setup	Any unhardened material; carbides needed for some case-hardened parts	2.0.002-2.0.010 in. common; 2.0.001 in. possible	63-250
Sawing	Bar, plate, sheet	2-in. armor plate in. is preferred)	0.010 in, thick	3-30 parts hour	Any nonhardened material;	±0.015 in possible	250-1000
Broaching	Tube, rod, bar, plate	74 in. long	1 in.	300-400 parts/minute	Any material with good machinability rating	±0.0005-±0.001 in.	32-125
Grindleg	Plate, rod, bars	36 in, wide × 7 in. dia.	0.020 in. địa	1-1000 pieces/hour	Nearly all metallic materials plus many nonmetallic	0.0001 in, and less	16
Shaping	Bar, plate, casting	3 ft × 6 ft	Limited usually by ability to hold part	1-4 partyhour	Low-to medium-carbon steels and nonferrous metals best: no bardened parts	±0.001-±0.002 in. (latger parts) ±0.0001-±0.0005 in. (small-medium parts)	63-250
Planing	Bar, plate, casting	42 ft wide × 18 ft high × 76 ft long	Parts too large for shaper work	1 part hour	Low- to medium-carbon steels or nonferrous materials best	±0.001-±0.005 (n.	63-125
Gear shaping	Blanks	120-india. gears 6-in. face widh	I in, dia.	1-60 parts/hour	Any material with good machinability rating	±0.001 in. or better at 200 D.P. to 0.0065 in. at 30 D.P.	63

ME-215 Engineering Materials and Processes

FIGURE 20-12 Oblique machining has three measurable components of forces acting on

the tool. The forces vary with speed, depth of cut, and feed.

Veljko Samardzic

ME-215 Engineering Materials and Processes

М	aterial	Unit Power (hp-min. in. ³) HP _s	Specific Energy (inlb/in. ³) K, or U	Hardness Brinell HB	
Nonalloy carbon steel	C 0.15%	.58	268,000	125	
	C 0.35%	.58	302,400	150	
	C 0.60%	.75	324,800	200	
Alloy steel	Annealed	.50	302,400	180	
	Hardened and tempered	0.83	358,400	275	
	Hardened and tempered	0.87	392,000	300	
	Hardened and tempered	1.0	425,000	350	
High-alloy steel	Annealed	0.83	369,000	200	
	Hardened	1.2	560,000	325	
Stainless steel, annealed	Martensitic/ferritic	0.75	324,800	200	
Steel castings	Nonalloy	0.62	257,000	180	
	Low-alloy	0.67	302,000	200	
	High-alloy	0.80	336,000	225	
Stainless steel, annealed	Austenitie	0.73	369,600	180	
Heat-resistant alloys	Annealed Aged—Iron based Annealed—Nickel or cobalt Aged	0.78 		200 280 250 350	
Hard steel	Hardened steel	1.4	638,400	55 HRC	
	Manganese steel 12%	1.0	515,200	250	
Malleable iron	Ferritic Pearlitic	0.42	156,800 257,600	130 230	
Cast iron, low tensile		0.62	156,800	180	
Cast iron, high tensile		0.80	212,800	260	
Nodular SG iron	Ferritic	0.55	156,800	160	
	Pearlitic	0.76	257,600	250	
Chilled east iron		-	492,800	400	
Aluminum alloys	Non-heat-treatable	.25	67,200	60	
	Heat-treatable	.33	100,800	100	
Aluminum alloys (cast)	Non-heat-treatable	.25	112,000	75	
	Heat-treatable	.33	123,200	90	
Bronze-brass alloys	Lead alloys, Pb>1% Brass, cartridge brass Bronze and lead-free copper Includes Electrolytic copper	.25 1.8–2.0 0.33–0.83 0.90	100,800 112,000 246,400	110 90 100	
Zine alloy	Diecast	0.25		01251	
Titanium		.034	250-275		

TABLE 20-3 Values for Unit Power and Specific Energy (cutting stiffness)

Values assume normal feed ranges and sharp tools. Multiply values by 1.25 for a dull tool.

Calculation of unit power (HP,)

 $HP = F_{*}V/33000$

HP, = HP/MRR Where

MRR = 12Vrsc for tube turning

 $HP_{e} = F_{e}V/12Vinc \times 33000 = F_{e}/inc \times 396000$

Calculation of specific energy (U)

 $U = F_c V/Vric = F_c/ric$ for tube turning

ME-215 Engineering Materials and Processes

ME-215 Engineering Materials and Processes

20.4 Orthogonal Machining (Two Forces)

ME-215 Engineering Materials and Processes

FIGURE 20-14 Schematics of the orthogonal plate machining setups. (a) End view of table, quick-stop device (QSD), and plate being machined for OPM. (b) Front view of horizontal milling machine. (c) Orthogonal plate machining with fixed tool, moving plate. The feed mechanism of the mill is used to produce low cutting speeds. The feed of the tool is *t* and the DOC is *w*, the width of the plate.

Chip Rake angle Tool Chip Tool Relief or clearance Flank angle Plate Onset of Onset of Workpiece shear plane shear angle (plate) w + (c) End view (on left) and side view of orthogonal plate machining with fixed tool and moving plate.

ME-215 Engineering Materials and Processes

FIGURE 20-15 Orthogonal tube turning (OTT) produces a two-force cutting operation at speeds equivalent to those used in most oblique machining operations. The slight difference in cutting speed between the inside and outside edge of the chip can be neglected.

ME-215 Engineering Materials and Processes

FIGURE 20-16 Videograph made from the orthogonal plate machining process.

ME-215 Engineering Materials and Processes

FIGURE 20-17 Schematic representation of the material flow, that is, the chip-forming shear process. f defines the onset of shear or lower boundary. c defines the direction of slip due to dislocation movement.

ME-215 Engineering Materials and Processes

FIGURE 20-18 Three characteristic types of chips. (Left to right) Discontinuous, continuous, and continuous with built-up edge. Chip samples produced by quick-stop technique. (*Courtesy of Eugene Merchant* (*deceased*) at Cincinnati Milacron, Inc., Ohio.)

ME-215 Engineering Materials and Processes

20.5 Merchant's Model

ME-215 Engineering Materials and Processes

FIGURE 20-19 Velocity diagram associated with Merchant's orthogonal machining model.

ME-215 Engineering Materials and Processes

20.6 Mechanics of Machining (Statics)

ME-215 Engineering Materials and Processes

FIGURE 20-20 Free-body diagram of orthogonal chip formation process, showing equilibrium condition between resultant forces *R* and *R*.

ME-215 Engineering Materials and Processes

FIGURE 20-21 Merchant's circular force diagram used to derive equations for *Fs*, *Fr*, *Ft*, and *N* as functions of *Fc*, *Fr*, f, a, and b.

ME-215 Engineering Materials and Processes

20.7 Shear Strain and Shear Front Angle

ME-215 Engineering Materials and Processes

FIGURE 20-22 Shear stress ts variation with the Brinell hardness number for a group of steels and aerospace alloys. Data of some selected fcc metals are also included. (Adapted with permission from S. Ramalingham and K. J. Trigger, Advances in Machine Tool Design and Research, 1971, Pergamon Press.)

ME-215 Engineering Materials and Processes

FIGURE 20-23 The Black–Huang "stack-of-cards" model for calculating shear strain in metal cutting is based on Merchant's bubble model for chip formation, shown on the left.

ME-215 Engineering Materials and Processes

20.8 Mechanics of Machining (Dynamics)

ME-215 Engineering Materials and Processes

FIGURE 20-24 Machining dynamics is a closed-loop interactive process that creates a force-displacement response.

ME-215 Engineering Materials and Processes

 Free Vibration The response to an initial condition or sudden change. The amplitude of the vibration decreases with time and occurs at the natural frequency of the system often produced by interrupted machining. Often appears as lines or shadows following a surface discontinuity.

• Forced Vibration The response to a periodic (repeating with time) input. The response and input occur at the same frequency. The amplitude of the vibration remains constant for a set input condition and is nonlinearly related to speed. Unbalance, misalignment, tooth impacts, and resonance of rotating systems are the most common examples.

• Self-Excited Vibration The periodic response of the system to a constant input. The vibration may grow in amplitude (unstable) and occurs near the natural frequency of the system regardless of the input. Chatter due to the regeneration of surface waviness is the most common metal cutting example.

FIGURE 20-25

There are three types of vibration in machining.

ME-215 Engineering Materials and Processes

FIGURE 20-26 Some examples of chatter that are visible on the surfaces of the workpiece.

ME-215 Engineering Materials and Processes

FIGURE 20-27 When the overlapping cuts get out of phase with each other, a variable chip thickness is produced, resulting in a change in *Fc* on the tool or workpiece.

ME-215 Engineering Materials and Processes

FIGURE 20-28 Regenerative chatter in turning and milling produced by variable uncut chip thickness.

ME-215 Engineering Materials and Processes

FIGURE 20-29 Milling and boring operations can be made more stable by correct selection of insert geometry.

ME-215 Engineering Materials and Processes

FIGURE 20-30 Dynamic analysis of the cutting process produces a stability lobe diagram, which defines speeds that produce stable and unstable cutting conditions.

ME-215 Engineering Materials and Processes

FIGURE 20-31 Distribution of heat generated in machining to the chip, tool, and workpiece. Heat going to the environment is not shown. Figure based on the work of A. O. Schmidt.

ME-215 Engineering Materials and Processes

FIGURE 20-32 There are three main sources of heat in metal cutting. (1) Primary shear zone. (2) Secondary shear zone tool–chip (T–C) interface. (3) Tool flank. The peak temperature occurs at the center of the interface, in the shaded region.

ME-215 Engineering Materials and Processes

FIGURE 20-33 The typical relationship of temperature at the tool–chip interface to cutting speed shows a rapid increase. Correspondingly, the tool wears at the interface rapidly with increased temperature, often created by increased speed.

ME-215 Engineering Materials and Processes

20.9 Summary

ME-215 Engineering Materials and Processes