Cutting Tools for Machining

Chapter 21

ME-215 Engineering Materials and Processes

21.1 Introduction

ME-215 Engineering Materials and Processes

Improvements in Cutting Tools

FIGURE 21-1 Improvements in cutting tool materials have led to significant increases in cutting speeds (and productivity) over the years.

ME-215 Engineering Materials and Processes

Selection of Cutting Tool Materials

FIGURE 21-2 The selection of the cuttingtool material and geometry followed by the selection of cutting conditions for a given application depends upon many variables

Diamond-natural/synthetic Sintered cubic boron nitride-CBN CVD-titanium carbide Sintered silicon carbide CVD-titanium nitride carbon nitride CVD-aluminum oxide CVD-chromium carbide Diffused layer-CVD-iron boride Sintered TiC-WC hard metals Nitrided case of an alloy steel Electrodeposited hard chrome plated Nitrided case of an unalloyed steel Hardened steel Hardened and tempered steel Iron n 1 2 5 7

FIGURE 21-3 (a) Hardness of cutting materials and (b) decreasing hardness with increasing temperature, called hot hardness. Some materials display a more rapid drop in hardness above some temperatures. *(From* Metal Cutting Principles, 2nd ed. Courtesy of Ingersoll Cutting Tool Company.)

Knoop hardness scale-1000 Kp/mm2

ME-215 Engineering Materials and Processes

Toughness

Toughness (as considered for tooling materials) is the relative resistance of a material to breakage, chipping, or cracking under impact or stress. Toughness may be thought of as the opposite of brittleness. Toughness testing is not the same as standardized hardness testing. It may be difficult to correlate the results of different test methods. Common toughness tests include Charpy impact tests and bend fracture tests.

FIGURE 21-4 The most

important properties of tool steels are:

 Hardness—resistance to deforming and flattening
 Toughness—resistance to breakage and chipping
 Wear resistance—resistance to abrasion and erosion.

Wear Resistance

Alloy elements (Cr, V, W, Mo) form hard carbide particles in tool steel microstructures. Amount & type present influence wear resistance.

Hardness of carbides:

 Hardened steel 	• 60/65 HRC
Chromium carbides	· 66/68 HRC
 Moly, tungsten carbides 	• 72/77 HRC
 Vanadium carbides 	· 82/84 HRC

Microstructure of P/M tool steel versus conventional tool steels shows the fine carbide distribution, uniformly distributed.

Properties of Cutting Tool Materials

The state of the s	and the second second second				TO DE LA COMPANY STREET			
	Carbon and Low-/Medium Alloy Steels	 High-Speed Steels 	Sintered Cemented Carbides	Coated HSS	Coated Carbides	Ceramics	Polycrystalline CBN	Diamond
Toughness	>		Decreas	ing				
Hot hardness	>			- Increasing				
Impact strength	4	——— Dec	reasing	1. 1830 N. 1999 NO				
Wear resistance	>				Inc	reasing —		
Chipping resistance	∢ D	ecreasing ——						
Cutting speed	•					Increasin	g)
Depth of cut	Light to medium	Light to heavy	Light to heavy	Light to heavy	Light to heavy	Light to heavy	Light to heavy	Very light for single-crystal diamond
Finish obtainable	Rough	Rough	Good	Good	Good	Very good	Very good	Excellent
Method of manufacture	Wrought	Wrought cast, HIP sintering	Cold pressing and sintering, PM	PVD ^b after forming	CVD ^c	Cold pressing and sintering or HIP sintering	High-pressure- high-temperature sintering	High-pressure- high-temperature sintering
Fabrication	Machining and grinding	Machining and grinding	Grinding	Machining and grinding, coating	Grinding before coating	Grinding	Grinding and polishing	Grinding and polishing
Thermal shock resistance	•					Incr	easing)
fool material cost	>						Increasing)

^bPhysical vapor deposition.

4 Chemical vapor deposition.

ME-215 Engineering Materials and Processes

21.2 Cutting-Tools Materials

ME-215 Engineering Materials and Processes

TABLE 21-1 Surface Treatments for Cutting Tools

Process	Method	Hardness ^a and Depth	Advantages	Limitations
Black oxide	HSS cutting tools are oxidized in a steam atmosphere at 1000°F	No change in prior steel hardness	Prevents built-up edge formations in machining of steel.	Strictly for HSS tools.
Nitriding case hardening	Steel surface is coated with nitride layer by use of cyanide salt at 900° to 1600°F, or ammonia, gas, or N ₂ ions.	To 72 R ₂ : Case depth: 0.0001 to 0.100 in.	High production rates with bulk handling, High surface hardness. Diffuses into the steel surfaces. Simulates strain hardening.	Can only be applied to steel. Process has embrittling effect because of greater hardness. Post-heat treatment needed for some alloys.
Electrolytic electroplating	The part is the cathode in a chromic acid solution; anode is lead. Hard chrome plating is the most common process for wear resistance.	70-72 R _c : 0.0002 to 0.100 in.	Low friction coefficient, antigalling, Corrosion resistance, High hardness,	Moderate production; pieces must be fixtured. Part must be very clean. Coating does not diffuse into surface, which can affect impact properties.
Vapor deposition chemical vapor deposition (CVD)	Deposition of coating material by chemical reactions in the gaseous phase. Reactive gases replace a protective atmosphere in a vacuum chamber, At temperatures of 1800° to 1200°F, a thin diffusion zone is created between the base metal and the coating.	To 84 R _c : 0.0002 to 0.0004 in.	Large quantities per batch. Short reaction times reduce substrate stresses. Excellent adhesion, recommended for forming tools. Multiple coatings can be applied (TiN, TiC, AL ₂ O ₃). Line-of-sight not a problem.	High temperatures can affect substrate metallurgy, requiring post-heat treatment, which can cause dimensional distortion (except when coating sintered carbides). Necessary to reduce effects of hydrogen chloride on material properties, such as impact strength. Usually not diffused. Tolerances of +0.001 required for HSS tools.
Physical vapor desposition (PVD sputtering)	Plasma is generated in a vacuum chamber by ion bombardment to dislodge particles from a target made of the coating material. Metal is evaporated and is condensed or attracted to substrate surfaces.	To 84 R.: To 0.0002 in. thick	A useful experimental procedure for developing wear surfaces. Can coat substrates with metals, alloys, compounds, and refractories. Applicable for all tooling.	Not a high-production method. Requires care in cleaning.Usually not diffused.
PVD (electron beam)	A plasma is generated in vacuum by evaporation from a molten pool that is heated by an electron- beam gun.	To 84 R _c : To 0.0002 in. thick	Can coat reasonable quantities per batch cycle. Coating materials are metals, compounds, alloys, and refractorics. Substrate metallurgy is preserved. Very good adhesion. Fine particle deposition. Applicable for all tooling.	Parts require fixturing and orientation in line-of-sight process. Ultra-cleanliness required.
PVD/ARC	Titanium is evaporated in a vacuum and reacted with nitrogen Gas. Resulting titanium nitride plasma is ionized and electrically attracted to the substrate surface. A high-energy process with multiple plasma guns.	To 85 R _c : To 0.0002 in: thick	Process at 900°F preserves substrate metallurgy. Excellent coating adhesion. Controllable deposition of grain size and growth. Dimensions, surface finish, and sharp edges are preserved. Can coat all high- speed steels without distortion.	Parts must be fixtured for line- of-sight process. Parts must be very clean. No by-products formed in reaction. Usually only minor diffusion.

*Rockwell hardness values above 68 are estimates.

ME-215 Engineering Materials and Processes

Cemented Carbide Inserts

Tungsten is carburized in a high-temperature furnace, mixed with cobalt and blended in large ball mills. After ball milling, the powder is screened and dried. Paraffin is added to hold the mixture together for compacting. Carbide inserts are compacted using a pill press. The compacted powder is sintered in a high-temperature vacuum furnace. The solid cobalt dissolves some tungsten carbide, then melts and fills the space between adjacent tungsten carbide grains. As the mixture is cooled, most of the dissolved tungsten carbide precipitates onto the surface of existing grains. After cooling, inserts are finish ground and honed or used in the pressed condition.

ME-215 Engineering Materials and Processes

Boring Head

ME-215 Engineering Materials and Processes

Triple Coated Carbide Tools

ME-215 Engineering Materials and Processes

Triple Coated Carbide Tools

FIGURE 21-8 Triple-coated carbide tools provide resistance to wear and plastic deformation in machining of steel, abrasive wear in cast iron, and built-up edge formation.

ME-215 Engineering Materials and Processes

Cutting Tool Material Properties

 TABLE 21-2
 Properties of Cutting-Tool Materials Compared for Carbides, Ceramics, HSS, and Cast Cobalt^a

	Hardness Rockwell A or C	Transverse Rupture (bend) Strength $(\times 10^3 \text{ psi})$	Compressive Strength $(\times 10^3 \text{ psi})$	Modulus of Elasticity $(e)(\times 10^6 \text{ psi})$
Carbide C1–C4	90–95 R _A	250-320	750-860	89–93
Carbide C5-C8	91–93 R _A	100-250	710-840	66-81
High-speed steel	86 R _A	600	600-650	30
Ceramic (oxide)	92–94 R _A	100-125	400-650	50-60
Cast cobalt	46–62 R _C	80-120	220-335	40

^aExact properties depend upon materials, grain size, bonder content, volume.

ME-215 Engineering Materials and Processes

Tool Material Group PCD High-speed machining of Cermets can machine same materials, but at (polycrystal aluminum alloys, nonferrous lower speeds and significantly less cost per diamond) metals, and nonmetals. corner. CBN Hard workpieces and Cermets cannot machine the harder workpieces (cubic high-speed machining on cast that CBN can. Cermets cannot machine cast boron nitride) iron at the speeds CBN can. The cost per corner irons. of cermets is significantly less. Ceramics High-speed turning and Cermets are more versatile and less expensive (cold press) grooving of steels and cast iron. than cold press ceramics but cannot run at the higher speeds. Ceramics Turning and grooving of hard Cermets cannot machine the harder workpieces (hot press) workpieces; high-speed finish or run at the same speeds on steels and irons machining of steels and irons. but are more versatile and less expensive. Ceramics Rough and semirough Cermets cannot machine cast iron at the high (silicon nitride) speeds of silicon nitride ceramics, but in machining of cast irons in turning and milling applications moderate-speed applications cermets may be at high speeds and under more cost effective. unfavorable conditions. Coated General-purpose machining of Cermets can run at higher cutting speeds and carbide steels, stainless steels, cast provide better tool life at less cost for iron, etc. semiroughing to finishing applications. Carbides Tough material for lower-speed Cermets can run at higher speeds, provide applications on various better surface finishes and longer tool life materials. for semiroughing to finishing applications.

FIGURE 21-9

Comparison of cermets with various cutting-tool materials.

ME-215 Engineering Materials and Processes

Polycrystalline Diamond Tools

FIGURE 21-10 Polycrystalline diamond tools are carbides with diamond inserts. They are restricted to simple geometries.

ME-215 Engineering Materials and Processes

Cost Comparison

	Ceramic TNG-433	PCBN BTNG-433
Cost per insert	\$14.90	\$208.00
Edges per insert	6	3
Cost per edge	\$2.48	\$69.33
Time per index (6 tools)	0.25 hr	0.25 hr
Cost per index at \$45 per hour	\$11.25	\$11.25
Indexes per 1500 blocks	43	3
Indexing cost (indexes \times \$11.25)	\$483.75	\$33.75
Insert cost for 6 spindles	\$638.34	\$1248.00
Labor and tool cost	\$1122.09	\$1281.00
Cost per bore	\$.125	\$.142
Total number of tool changes	43	3
Downtime for 1500 blocks	imes 0.25 hr	imes 0.25 hr
Downtime for 1500 blocks	10.75 hr	0.75 hr

^aTo see the economy of using PCBN cutting tools, it is important to consider all factors of the operation, especially downtime for tool changing.

ME-215 Engineering Materials and Processes

Application Comparison

		Applicable Tool M	laterial	
Workpiece Material	Carbide-Coated Carbide	Ceramic, Cermet	Cubic Boron Nitride	Diamond Compacts
Cast irons, carbon steels	х	uninterrupted finishing cuts X		
Alloy steels, alloy cast iron	x	x	x	
Aluminum, brass	х	x		x
High-silicon aluminum	x			x
Nickel-based	х	x	x	
Titanium	х			
Plastic composites	x		х	

ME-215 Engineering Materials and Processes

21.3 Tool Geometry

ME-215 Engineering Materials and Processes

Tool Geometry Terminology

FIGURE 21-11 Standard terminology to describe the geometry of singlepoint tools: (a) three dimensional views of tool, (b) oblique view of tool from cutting edge, (c) top view of turning with singlepoint tool, (d) oblique view from shank end of singlepoint turning tool.

ME-215 Engineering Materials and Processes

21.4 Tools Coating Processes

ME-215 Engineering Materials and Processes

CVD Process

FIGURE 21-12 Chemical vapor deposition is used to apply layers (TiC, TiN, etc.) to carbide cutting tools.

ME-215 Engineering Materials and Processes

PVC Arc Process

FIGURE 21-13 Schematic of PVC arc evaporation process

ME-215 Engineering Materials and Processes

Comparison of PVD Processes

Comparison of PVD Process Characteristics				
Process	Processing Temperature, °C	Throwing Power	Coating Materials	Coating Applications and Special Features
Vacuum evaporation	RT—700, usually <200	Line-of-sight	Chiefly metal, especially Al (a few simple alloys/ a few simple compounds)	Electronic, optical, decorative, simple masking.
Ion implantation	200–400, best <250 for N	Line-of-sight	Usually N (B, C)	Wear resistance for tools, dies, etc. Effect much deeper than original implantation depth. Precise area treatment, excellent process control.
Ion plating, ARE	RT—0.7 T_m of coating. Best at elevated temperatures.	Moderate to good	Ion plating: Al, other metals (few alloys) ARE: TiN and other compounds	Electronic, optical, decorative. Corrosion and wear resistance. Dry lubricants. Thicker engineering coatings.
Sputtering	RT—0.7 T_m of metal coatings. Best >200 for nonmetals.	Line-of-sight	Metals, alloys, glasses, oxides. TiN, and other compounds	Electronic, optical, wear resistance. Architectural (decorative). Generally thin coatings. Excellent process control.
CVD	300-2000, usually 600-1200	Very good	Metals, especially refractory TiN and other compounds; pyrolytic BN	Thin, wear-resistant films on metal and carbide dies, tools, etc. Free-standing bodies or refractory metals and pyrolytic C or BN.

RT= room temperature; ARE = activated reactive evaporation; T_m = absolute melting temperature. (a) Compounds: oxides, nitrides, carbides, silicides, and borides of AI, B, Cr, Hf, Mo, Nb, Ni, Re, Si, Ta, Ti, V, W, Zr.

Source: Advanced Materials and Processes, December 2001.

FIGURE 21-14 Comparison of PVD methods for depositing thin films on microelectronic devices as well as cutting tools.

ME-215 Engineering Materials and Processes

21.5 Tool Failure and Tool Life

ME-215 Engineering Materials and Processes

Tool Failure

FIGURE 21-15 Tools can fail in many ways. Tool wear during oblique cutting can occur on the flank or the rake face; t = uncut chip thickness; kt = crater depth; wf = flank wear land length; DCL = depth-of-cut line.

ME-215 Engineering Materials and Processes

21.6 Flank Wear

ME-215 Engineering Materials and Processes

Tools Wear

FIGURE 21-16 Tool wear on the flank displays a random nature, as does tool life. Wf = flank wear limit value.

ME-215 Engineering Materials and Processes

Veljko Samardzic

Cutting time, T, minutes

70

 σ

Typical Tool Wear Curves

ME-215 Engineering Materials and Processes

FIGURE 21-17 Typical tool

Veljko Samardzic

Taylor Tool Life Curves

FIGURE 21-18 Construction of the Taylor tool life curve using data from deterministic tool wear plots like those of Figure 21-17. Curves like this can be developed for both flank and crater wear.

ME-215 Engineering Materials and Processes

				Size of Cut (in.)			$VT^n = C$	
Source Tool Material	Geometry	Workpiece Material	Depth	Feed	Cutting Fluid	n	С	
1	High-carbon steel	8.14, 6.6, 6.15, 3/64	Yellow brass (.60 Cu, 40 Zn, 85 NI, .006 Pb)	.050 .100	.0255 .0127	Dry Dry	.081 .096	242 299
1	High-carbon steel	8.14, 6.6, 6.15, 3/64	Bronze (.9 Cu, .1.5n)	.050 .100	.0255 .0127	Dry Dry	.086 .111	190 232
1	HSS-18-4-1	8.14, 6, 6, 6, 15, 3/64	Cast Iron 160 Bhn Cast iron, Nickel, 164 Bhn Cast iron, NI-Cr, 207 Bhn	.050 .050 .050	.0255 .0255 .0255	Dry Dry Dry	.101 .111 .088	172 186 102
1	HSS-18-4-1	8.14, 6.6, 6.15, 3/64	Stell, SAE B1113 C.D. Stell, SAE B1112 C.D. Stell, SAE B1120 C.D. Stell, SAE B1120 + Pb C.D. Stell, SAE B1035 C.D. Stell, SAE B1035 + Pb C.D.	.050 .050 .050 .050 .050 .050	.0127 .0127 .0127 .0127 .0127 .0127	Dry Dry Dry Dry Dry Dry Dry	.080 .105 .100 .060 .110 .110	260 225 270 290 130 147
1	HSS-18-4-1	8.14, 6.6, 6.15, 3/64 8.14, 6.6, 6.13, 3/66 8.14, 6.6, 6.15, 3/64 8.14, 6.6, 6.15, 3/64	Stell, SAE 1045 C.D. Stell, SAE 2340 185 Bhn Stell, SAE 2345 198 Bhn Stell, SAE 3140 190 Bhn	.100 .100 .050 .100	.0127 .0125 .0255 .0125	Dry Dry Dry Dry	.110 .147 .105 .160	192 143 126 178
1	HSS-18-4-1	8.14, 6.6, 6.15, 3/64	Stell, SAE 4350 363 Bhn Stell, SAE 4350 363 Bhn	.0125 .0125 .0250 .100 .100	.0127 .0255 .0255 .0127 .0255	Dry Dry Dry Dry Dry Dry	.080 .125 .125 .110 .110	181 146 95 78 46
1	HSS-18-4-1	8.14, 6.6, 6.15, 3/64	Stell, SAE 4140 230 Bhn Stell, SAE 4140 271 Bhn Stell, SAE 6140 240 Bhn	.050 .050 .050	.0127 .0127 .0127	Dry Dry Dry	.180 .180 .150	190 159 197
1	HSS-18-4-1	8.22, 6.6, 6.15, 3/64	Monel metal 215 Bhn	.100 .150 .100 .100	.0127 .0255 .0127 .0127	Dry Dry Em SMO	.080 .074 .080 .105	170 127 185 189
1	Stellite 2400	0.0, 6.6, 6.0, 3/32	Steel, SAE 3240 annealed	.187 .125 .062 .031	.031 .031 .031 .031	Dry Dry Dry Dry Dry	.190 .190 .190 .190	215 240 270 310
1	Stellite No. 3	0.0, 6.6, 6.0, 3/32	Cast iron 200 Bhn	.062	0.31	Dry	.150	205
1	Carbide (T 64)	6.12, 5.5, 10.45	Steel, SAE 1040 annealed Steel, SAE 1060 annealed Steel, SAE 2340 annealed	.062 .125 .187 .250 .062 .062 .062	.025 .025 .025 .025 .021 .042 .062 .025	Dry Dry Dry Dry Dry Dry Dry Dry	.156 .167 .167 .167 .167 .164 .162 .162	800 660 615 560 880 510 400 630
2	Ceramic	not available	AISI 4150 AISI 4150	.160	.016	Dry Dry	.400	2000 620

Sources: 1- Fundamentals of Tool Design. ASTME, A.R. Konceny, W. J. Pottholf 2 - Theory of Metal Cutting, P.N. Black

ME-215 Engineering Materials and Processes

Tool Life Plots

FIGURE 21-19 Log-log tool

life plots for three steel work materials cut with HSS tool material.

ME-215 Engineering Materials and Processes

Tools Life

FIGURE 21-20 Tool life viewed as a random variable has a log normal distribution with a large coefficient of variation.

ME-215 Engineering Materials and Processes

Tool Life Data

FIGURE 21-21 Tool life test data for various coated drills. TiN-coated HSS drills outperform uncoated drills. Life based on the number of holes drilled before drill failure.

Drill performance based on the number of holes drilled with 1/4-in.-diameter drills in T–1 structural steel.

21.7 Economics of Machining

ME-215 Engineering Materials and Processes

Cost per Unit

ME-215 Engineering Materials and Processes

Cost Comparison

TABLE 21-6 Cost Comparison of Four Tool Materials, Based on Equal Tool Life of 40 Pieces per Cutting Edge

	Uncoated	TiC-Coated	A12O3-Coated	A12O3LFG
Cutting speed (surface ft/min)	400	640	1100	1320
Feed (in./rev)	0.020	0.022	0.024	0.028
Cutting edges available per insert	6	6	6	3
Cost of an insert (\$/insert)	4.80	5.52	6.72	6.72
Tool life (pieces/cutting edge)	192	108	60	40
Tool-change time per piece (min)	0.075	0.075	0.075	0.075
Nonproductive cost per piece (\$/pc)	0.50	0.50	0.50	0.50
Machining time per piece (min/pc)	4.8	2.7	1.50	1.00
Machining cost per piece (\$/unit)	4.8	2.7	1.5	1.00
Tool-change cost per piece (\$/pc)	0.08	0.08	0.08	0.08
Cutting-tool cost per piece (\$/pc)	0.02	0.02	0.03	0.06
Total cost per piece (\$/pc)	5.40	3.30	2.11	1.64
Production rate (pieces/hr)	11	18	29	38
Improvement in productivity				
based on pieces/hr (%)	0	64	164	245

Source: Data from T. E. Hale et al., "High Productivity Approaches to Metal Removal," Materials Technology, Spring 1980, p. 25.

ME-215 Engineering Materials and Processes

Machinability Rating

FIGURE 21-23 Machinability ratings defined by deterministic tool life curves.

ME-215 Engineering Materials and Processes

21.8 Cutting Fluids

ME-215 Engineering Materials and Processes

Cutting Fluid Contaminants

TABLE 21-7 Cutting Fluid Contaminants

Category	Contaminants	Effects
Solids	Metallic fines, chips Grease and sludge Debris and trash	Scratch product's surface Plug coolant lines Produce wear on tools and machines
Tramp fluids	Hydraulic oils (coolant) Water (oils)	Decrease cooling efficiency Cause smoking Clog paper filters Grow bacteria faster
Biologicals (coolants)	Bacteria Fungi Mold	Acidity coolant Break down emulsions Cause rancidity, dermatitis Require toxic biocides

ME-215 Engineering Materials and Processes

Fluid Recycling System

FIGURE 21-24 A well-designed recycling system for coolants will return more than 99% of the fluid for reuse.

ME-215 Engineering Materials and Processes