

Two materials that are completely insoluble in each other in both the liquid and solid states

Cooling Curves

- Figure 4-4 shows the transition points of a temperature time curve for a solution of NaCl in water
- Line a-c-f-h-l shows the lowest temperature at which the solution is totally liquid, known as a liquidis line

Figure 4-4 Partial equilibrium diagram for NaCl and H_2O derived from cooling-curve information.

Solubility Diagrams

Figure 4-6 (Below) Copper-nickel equilibrium phase diagram, showing complete solubility in both liquid and solid states.

Pb-Sn diagram

Three-phase reactions

Eutectic $(L \rightarrow S_1 + S_2)$

Peritectic $(L + S_1 \rightarrow S_2)$

Monotectic $(L_1 \rightarrow S_1 + L_2)$

Syntectic $(L_1 + L_2 \rightarrow S_1)$

Eutectoid $(S_1 \rightarrow S_2 + S_3)$

Peritectoid $(S_1 + S_2 \rightarrow S_3)$

Stoichiometric intermetallic compound

Nonstoichiometric intermetallic compound

Figure 4-9 Schematic summary of three-phase reactions and intermetallic compounds.

Iron-Carbon Equilibrium Diagram

Figure 4-10 The iron-carbon equilibrium phase diagram. Single phases are α , ferrite; γ , austenite; δ , δ -ferrite; Fe₃C, cementite.

- Four single phase solids within the diagram
- Delta-ferrite, austenite, ferrite, cementite
- Steels are the iron alloys with less than 2.11% carbon

Utilization of Diagrams Figure 8 Equilibrium diagram showing the changes that occur during the cooling

- Phase diagrams contain the following information
 - The phases that are present at a given temperature and composition
 - Composition of each phase
 - Amount of each phase present
 - Using the lever law, the amount of each phase in a two-phase region can be calculated

Fraction of the material that is liquid

$$\frac{a - S_2}{L_2 - S_2} \times 100\% = L.F.$$

Fe-C Low T, Low 5C

