MODULE 03

MATERIALS PROPERTIES

Metallic and Nonmetallic Materials

- Metallic materials
 - Iron, steel, copper, aluminum, magnesium, etc.
 - General properties
 - Luster, high thermal conductivity, high electrical conductivity, ductile
- Nonmetallic materials
 - Wood, brick, concrete, glass, rubber, plastic, etc.
 - General properties
 - Weaker, less ductile, less dense

Physical and Mechanical Properties

- Physical properties:
 - Density, melting point, optical properties, thermal properties, electrical properties, magnetic properties
- Mechanical properties:
 - A property that dictates how a material responds to applied loads and forces
 - Determined through specified testing
 - It is important to take the testing methodology

Testing Standards and Concerns

- American Society of Testing and Materials (ASTM) has standardized the testing methodologies for determining physical and mechanical properties
- Important that the tests are standardized and reproducible
- ASTM maintains and updates testing standards

Stress and Strain

- Strain is the distortion or deformation of a material from a force or a load
- Stress is the force or the load being transmitted through the material's cross sectional area
- Stress and strain can occur as tensile, compressive or shear

Figure 2-2 Tension loading and the resultant elongation.

Engineering Stress-Strain Curve

Figure 2-6 Engineering stress-strain diagram for a low-carbon steel.

Key features

- Proportional limit (below this limit, the strain is directly proportional to stress)
- Ratio of stress to strain is Young's Modulus
 - Measures stiffness
 - Designated by E
- Ultimate Strength
 - Stress at which the load-bearing ability peaks

PROPERTIES DETERMINED BY THE STRAIN-STRESS CURVE

- Engineering stress-strain diagram
- Proportionality limits (Hooke's law)
- Elastic limit
- Young's modulus (E)
- Measure of Stiffness
- Resilience
- Yield point, upper and lower
- Maximal load
- Breaking stress

Additional Properties from the Stress-Strain Curve

- Modulus of resilience- amount of energy per unit volume that a material can absorb
- Plastic deformation- permanent change in shape due to a load that exceeded the elastic limit
- Yield point- stress value where additional strain occurs without an increase in stress
- Offset yield strength- the stress required to produce an allowable amount of permanent strain

TOUGHNESS

- Toughness- work per unit volume to fracture a material
- Total area under the stress-strain curve
- The toughness is the product of yield strength and uniform elongation

NO WELL-DEFINED YOILD POINT

TRUE VS ENGINEERING STRESS-STRAIN

- Instantaneous stress versus the summation of the incremental strain
- $\epsilon = \ln(L/Lo) = 2\ln(Do/D)$

True Stress-Strain Curve

True strain Figure 2-10 True stress-strain curve for an engineering metal.

STRAIN HARDENING EXPONENT

- σ=Kε**n
- N-strain hardening exponent

TRUE STRESS-STRAIN CURVES AT LARGE AND SMALL HARDENING

DUCTILITY AND BRITTLENESS

- Ductility-amount of deformation that precedes fracture
- A brittle material fails with no plastic deformation

Ductility and Brittleness

- Necking is a localized reduction in cross sectional area
- For ductile materials, necking occurs before fracture
- For brittle materials, fracture ends the stress strain curve before necking
- Percent elongation is the percent change of a material at fracture
- Material failure is the onset of localized deformation or necking

Figure 2-8 A standard 0.505-in diameter tensile specimen showing a necked region developed prior to failure.

Percent Reduction in Area:

$$R.A. = \frac{A_0 - A_f}{A_0} \times 100\%$$

Hardness Testing

- Hardness is the resistance to permanent deformation in the form of penetration or indentation
 - Brinell Hardness Test
 - Measures the indentation of a steel ball
 - Yields a Brinell hardness number based on diameter of indentation
 - Rockwell Test
 - Small steel ball or diamond tip cone (called a brale) causes an indentation
 - Indentation is measured based on depth
 - Vickers Hardness Test-a diamond pyramid as indenter
 - Knoop Microhardness Test-micro indentation
 - Test
- Hardness testing can provide a close approximation of tensile strength (~500 times the Brinell hardness number for psi)

Hardness Testing

Figure 2-14b Brinell test sequence showing loading and measurement of the indentation under magnification with a scale calibrated in millimeters.

Figure 2-15a Operating principle of the Rockwell hardness tester. (Courtesy of Wilson Instruments Division, Instron Corp., Norwood, MA.)

HARDNESS VS TENSILE STRENGTH

Dynamic Properties

- Bending impacts
 Charpy and Ized to
 - Charpy and Izod tests
- Tension impacts
- Fatigue and endurance limit
 - Materials can fail if they are subjected to repeated applications of stress
 - Fatigue is cyclic repetition of a load
 - Stress versus number of cycles curves are useful in determining endurance limits
 - Endurance limit is the stress below which the material will not fail regardless of the number of cycles
 - Fatigue strength is the maximum stress that can be sustained for a number of loading cycles

IZOD SPECIMEN

SHARPY SPECIMEN

S-N CURVE SHOWING AN ENDURANCE LIMIT

Fatigue Failures

- Fatigue resistance is sensitive to sharp corners, surface cracks, gouges, etc.
- Fatigue life can be affected by changes in the environment (corrosion)
- Residual stresses can negatively impact fatigue life
- Crack growth continues with each successive application of the load until failure

Fracture Toughness

- All materials contains flaws or defects
- Material defects:
 - Pores
 - Cracks
 - Inclusions
- Manufacturing or Design defects
 - Abrupt section changes
 - Excessively small fillets
 - Small holes

Fracture Toughness

- Fracture toughness is a quantitative way of expressing a material's resistance to <u>brittle</u> fracture when a crack is present.
- If a material has a large value of fracture toughness it will probably undergo <u>ductile</u> fracture.
- Brittle fracture is very characteristic of materials with a low fracture toughness value.

Fracture Mechanics

- Identify the conditions under which defects will grow
 - Size of the largest or most critical flaw
 - Applied stress
 - Fracture toughness
- Dormant defects are those whose size remains unchanged through the lifetime of the part
- Dynamic defects change through the life of the part

NOTCH TOUGHNESS IMPACT DATA

CREEP CURVE

Time, t

FATIGUE STRESS AT VARIOUS TEMPERATURE

TEMPERATURE EFFECT ON TENSILE PROPERTIES

2.5 Machinability, Formability, and Weldability

- Machinability,
- Formability-, Capability of a material to be shaped by plastic deformation.
- Weldability-suitability of a metal to be welded under specified conditions

MACHINABILITY

- the ease with which a metal can be <u>machined</u> to an acceptable surface finish.
- Require little power to cut, can be cut quickly, easily obtain a good finish, and do not wear the tooling much;
- Such materials are said to be free machining.

MACHINABILITY

- Machinability can be based on the measure of how long a tool lasts.
- Higher specific energies equal lower machinability
- The surface finish is sometimes used to measure the machinability of a material.
- The surface finish is sometimes used to measure the machinability of a material. Soft, ductile materials tend to form a <u>built up edge</u>

SUMMARY

- Most important properties determined material integrity
- Techniques for properties determination are given.