COURSE NUMBER	ME 425								
COURSE TITLE	Finite Element Method in Mechanical Engineering								
COURSE STRUCTURE	(3-0-3) (lecture hr/wk - lab hr/wk – course credits)								
COURSE	Rong-Yaw Chen								
COORDINATOR									
COURSE DESCRIPTION	Introduction to central ideas underlying the finite element method in								
	mechanical engineering and its computer implementation.								
	Fundamental concepts such as interpolation functions for one- and two								
	-dimensional elements, bar element method, Galerkin's method,								
	discretization of a model, methods of assembling global matrices, and								
	the final solution techniques for obtaining nodal values. Specific								
	applications to mechanical engineering problems in trusses, beams, torsion heat transfer, fluid flow, plane stress, and plane strein								
	CIS 101 Computer Programming and Problem Solving								
PREREQUISITE(S)	Math 222 Differential Equations								
	$\frac{1}{1}$								
	NECH 257 Strength of Materials								
KEQUIRED ELECTIVE,	Elective								
	None								
REQUISITE(S)	Introduction to Finite Element Analysis and Design								
MATERIALS	By Nam-Ho Kim and Bhayani V Sankar								
	Publisher: John Wiley & Sons Inc. 2009								
Other supplemental	Hand out lecture note with examples								
materials	rand out recture note with examples								
COMPUTER USAGE	ANSYS software is used to solve projects.								
COURSE LEARNING	Course Learning Outcomes SOs [*] Expected								
OUTCOMES/	Č		Performance Criteria						
EXPECTED	1 derive 1-D element matrix	a.e.g.k	Homework (80% o						
PERFORMANCE	equation for bar under tension		the students will earn a						
CRITERIA:	and heat transfer type problem		grade of 70% or better)						
	2. apply the steps required for	a,b,c,d,e,	Homework, Project						
	FEM solution to variety of	f,k	(80% o the students						
	physical systems and obtain		will earn a grade of						
	engineering design quantities		75% or better)						
	3. use existing software	a,b,c,e,g,i	Project (80% o the						
	(available from ME CAD room)	,k	students will earn a						
	such as ANSYS to work on		grade of 70% or better)						
	projects								
	4. select engineering design	a,b,c,e,h,	Homework, Project						
	quantities (force, stress or heat	k	(80% o the students						
	flux) for truss, beam, plane stress		will earn a grade of						
	or heat transfer problems		/0% or better)						
	1 Introduction spring and	har alamant	e element and alabal						
ULADD I UPIUD	matrix equations solution								
	2 Interpolation functions potential energy residual integral								
	2. Interpolation functions, potential energy, residual integral.								

	3. Matrix algebra.											
		4. Truss element formulation, element stiffness, asser							asseml	oled		
		and condensed matrices.										
		 5. ANSYS – truss structure. 6. Heat transfer in a fin, axial deformation of a bar using 3-node element. 										
		7. Beam and Frame elements, Hermite Interp. Functions.										
		8. ANSYS – frame structure.										
		9. Gaussian quadrature.										
		 2-D elements, triangular and rectangular elements, isoparametric transformation. ANSYS – 2-D heat transfer. Potential flow and torsion of a solid bar. Plane elastic problems. 1-D time dependent problems. 										
		15.	ANSY	S - pla	ne str	ess ana	lysis.					
STUDENT	а	b	c	d	e	f	g	h	i	j	k	
OUTCOMES (SCALE: 1-3)	3	2	3	1	3	1	3	1	2	1	2	
	3 –	3 – Strongly supported 2 – Supported 1 – Minimally supported										
* Student Outcomes												