Fundamentals of Metal Forming

Chapter 15
15.1 Introduction

- Deformation processes have been designed to exploit the plasticity of engineering materials
- Plasticity is the ability of a material to flow as a solid without deterioration of properties
- Deformation processes require a large amount of force
- Processes include bulk flow, simple shearing, or compound bending
States of Stress

<table>
<thead>
<tr>
<th>Table 15-1 Classification of States of Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

- (1) Simple uniaxial tension
- (2) Biaxial tension
- (3) Triaxial tension
- (4) Biaxial tension, compression
- (5) Biaxial tension and compression
- (6) Uniaxial compression
- (7) Biaxial compression
- (8) Biaxial compression, tension
- (9) Triaxial compression
- (10) Pure shear
- (11) Simple shear with triaxial compression
- (12) Biaxial shear with triaxial compression
15.2 Forming Processes: Independent Variables

- Forming processes consist of independent and dependent variables
- Independent variables are the aspects of the processes that the engineer or operator has direct control
 - Starting material
 - Starting geometry of the workpiece
 - Tool or die geometry
 - Lubrication
 - Starting temperature
 - Speed of operation
 - Amount of deformation
Forming Operations

<table>
<thead>
<tr>
<th>Process</th>
<th>Schematic Diagram</th>
<th>State of Stress in Main Part During Forming<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rolling</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Forging</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Extrusion</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Shear spinning</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>
Forming Operations

- Tube spinning
- Swaging or kneading
- Deep drawing
- Wire and tube drawing

In flange of blank, 5
In wall of cup, 1
Forming Operations

- Stretching
- Straight bending
- Contoured flanging
 - (a) Convex: At outer flange, 6, At bend, 2 and 7
 - (a) Concave: At outer flange, 1, At bend, 2 and 7

Numbers correspond to those in parentheses in Table 15-1.
15.3 Dependent Variables

• Dependent variables are those that are determined by the independent variable selection
 – Force or power requirements
 – Material properties of the product
 – Exit or final temperature
 – Surface finish and precision
 – Nature of the material flow
15.4 Independent-Dependent Relationships

• Independent variables - control is direct and immediate

• Dependent variables - control is entirely indirect
 – Determined by the process
 – If a dependent variable needs to be controlled, the designer must select the proper independent variable that changes the dependent variable
Independent-Dependent Relationships

- Information on the interdependence of independent and dependent variables can be learned in three ways
 - Experience
 - Experiment
 - Process modeling

Figure 15-1 Schematic representation of a metalforming system showing independent variables, dependent variables, and the various means of linking the two.
15.5 Process Modeling

- Simulations are created using finite element modeling
- Models can predict how a material will respond to a rolling process, fill a forging die, flow through an extrusion die, or solidify in a casting
- Heat treatments can be simulated
- Costly trial and error development cycles can be eliminated
15.6 General Parameters

• Material being deformed must be characterized
 – Strength or resistance for deformation
 – Conditions at different temperatures
 – Formability limits
 – Reaction to lubricants

• Speed of deformation and its effects

• Speed-sensitive materials- more energy is required to produce the same results
15.7 Friction and Lubrication Under Metalworking Conditions

• High forces and pressures are required to deform a material

• For some processes, 50% of the energy is spent in overcoming friction

• Changes in lubrication can alter material flow, create or eliminate defects, alter surface finish and dimensional precision, and modify product properties

• Production rates, tool design, tool wear, and process optimization depend on the ability to determine and control friction
Friction Conditions

- Metalforming friction differs from the friction encountered in mechanical devices.
- For light, elastic loads, friction is proportional to the applied pressure.
 - μ is the coefficient of friction.
- At high pressures, friction is related to the strength of the weaker material.

Figure 15-2 The effect of contact pressure on the frictional resistance between two surfaces.
Friction

- Friction is resistance to sliding along an interface.
- Resistance can be attributed to:
 - Abrasion
 - Adhesion
- Resistance is proportional to the strength of the weaker material and the contact area.
Surface Deterioration

- Surface wear is related to friction
- Wear on the workpiece is not objectionable, but wear on the tooling is
- Tooling wear is economically costly and can impact dimensional precision
- Tolerance control can be lost
- Tool wear can impact the surface finish
Lubrication

• Key to success in many metalforming operations

• Primarily selected to reduce friction and tool wear, but may be used as a thermal barrier, coolant, or corrosion retardant

• Other factors
 – Ease of removal, lack of toxicity, odor, flammability, reactivity, temperature, velocity, wetting characteristics
15.8 Temperature Concerns

- Workpiece temperature can be one of the most important process variables.
- In general, an increase in temperature is related to a decrease in strength, increase in ductility, and decrease in the rate of strain hardening.
- Hot working
- Cold working
- Warm working
Hot Working

- Plastic deformation of metals at a temperature above the recrystallization temperature
- Temperature varies greatly with material
- Recrystallization removes the effects of strain hardening
- Hot working may produce undesirable reactions from the metal and its surroundings
Structure and Property Modification by Hot Working

• The size of grains upon cooling is not typically uniform

• Undesirable grain shapes can be common (such as columnar grains)

• Recrystallization is followed by:
 – grain growth
 – additional deformation and recrystallization
 – drop in temperature that will terminate diffusion and freeze the recrystallized structure
Hot Working

- Engineering properties can be improved through reorienting inclusion or impurities.
- During plastic deformation, impurities tend to flow along with the base metal or fraction into rows of fragments.

Figure 15-3 Cross section of a 4-in.-diameter case copper bar polished and etched to show the as-cast grain structure.

Figure 15-4 Flow structure of a hot-forged gear blank. Note how flow is parallel to all critical surfaces. (*Courtesy of Bethlehem Steel Corporation, Bethlehem, PA.*)
Temperature Variations in Hot Working

- Success or failure of a hot deformation process often depends on the ability to control temperatures.
- Over 90% of the energy imparted to a deforming workpiece is converted to heat.
- Nonuniform temperatures may be produced and may result in cracking.
- Thin sections cool faster than thick sections.

Figure 15-5 Schematic comparison of the grain flow in a machined thread (a) and a rolled thread (b). The rolling operation further deforms the axial structure produced by the previous wire- or rod-forming operations, while machining simply cuts through it.
Cold Working

- Plastic deformation below the recrystallization temperature
- Advantages as compared to hot working
 - No heating required
 - Better surface finish
 - Superior dimensional control
 - Better reproducibility
 - Strength, fatigue, and wear are improved
 - Directional properties can be imparted
 - Contamination is minimized
Disadvantages of Cold Working

- Higher forces are required to initiate and complete the deformation
- Heavier and more powerful equipment and stronger tooling are required
- Less ductility is available
- Metal surfaces must be clean and scale-free
- Intermediate anneals may be required
- Imparted directional properties can be detrimental
- Undesirable residual stresses may be produced
Metal Properties and Cold Working

- Two features that are significant in selecting a material for cold working are
 - Magnitude of the yield-point stress
 - Extent of the strain region from yield stress to fracture
- Springback should also be considered when selecting a material

Figure 15-6 Use of true stress-true strain diagram to assess the suitability of two metals for cold working.
Initial and Final Properties in a Cold-Working Process

• Quality of the starting material is important to the success or failure of the cold-working process

• The starting material should be clean and free of oxide or scale that might cause abrasion to the dies or rolls

Figure 15-7 (Below) Stress-strain curve for a low-carbon steel showing the commonly observed yield-point runout; (Right) Luders bands or stretcher strains that form when this material is stretched to an amount less than the yield-point runout.
Additional Effects of Cold Working

- Annealing heat treatments may be performed prior or at intermediate intervals to cold working.
- Heat treatments allow additional cold working and deformation processes.
- Cold working produces a structure where properties vary with direction, anisotropy.

Figure 15-8 Mechanical properties of pure copper as a function of the amount of cold work (expressed in percent).
Warm Forming

• Deformations produced at temperatures intermediate to cold and hot working

• Advantages
 – Reduced loads on the tooling and equipment
 – Increased material ductility
 – Possible reduction in the number of anneals
 – Less scaling and decarburization
 – Better dimensional precision and smoother surfaces than hot working
 – Used for processes such as forging and extrusion
Isothermal Forming

- Deformation that occurs under constant temperature
- Dies and tooling are heated to the same temperature as the workpiece
- Eliminates cracking from nonuniform surface temperatures
- Inert atmospheres may be used

Figure 15-10 Yield strength of various materials (as indicated by pressure required to forge a standard specimen) as a function of temperature. Materials with steep curves may require isothermal forming. (From “A Study of Forging Variables,” ML-TDR-64-95, March 1964; courtesy of Battelle Columbus Laboratories, Columbus, OH.)